
University of Pisa
Department of Computer Science

Bachelor’s Degree in Computer Science (L-31)

Goal-driven Management of
IoT Indoor Environments

Supervisors:
Prof. Antonio Brogi
Dr. Stefano Forti

Candidate:
Giuseppe Bisicchia

A.Y. 2019/2020

Abstract

�is thesis aims at designing and prototyping a goal-oriented system for manag-

ing domotics IoT devices by suitably reconciling possibly con�icting goals set by

di�erent stakeholders. �e prototype exploits Micro:bit devices for sensing and

actuating, extends the Web of �ings standard with REST interfaces, and employs

the Prolog language for reasoning.

Contents

1 Introduction 4

1.1 Context . 4

1.2 Considered Problem . 5

1.3 Objectives of the �esis . 7

1.4 Outline of the �esis . 8

2 Background 9

2.1 Micro:bit . 9

2.2 Web of �ings . 11

2.3 Prolog . 12

3 GiòEnv: Design & Implementation 15

3.1 GiòEnv Overview . 15

3.1.1 Big Picture . 15

3.1.2 Architecture Bird’s Eye-View 17

3.2 GiòEnv Components . 19

3.2.1 Simple Storage Microservice 19

3.2.2 GiòBu�on . 20

1

CONTENTS

3.2.3 GiòBu�ons Manager . 24

3.2.4 Web of �ings Server . 27

3.2.5 GiòMediator . 31

3.2.6 GiòDashboard . 43

3.2.7 GiòInterface . 45

4 Testing and Use Cases 47

4.1 Testing . 47

4.1.1 Testbed . 47

4.1.2 Experiments . 48

4.2 Use Cases . 49

4.2.1 Remember to Turn O� the Light 52

4.2.2 Season-Wise . 54

4.2.3 Virtue Stands in the Middle 57

5 Conclusions and Future Work 59

5.1 Summary . 59

5.2 Related Work . 60

5.3 Assessment of Results . 62

5.4 Future Work . 66

A First Version of the Web of Things Server 80

A.1 Mozilla’s Web of �ings . 80

A.2 ReTRo . 82

A.2.1 Principles . 82

A.2.2 Characteristics . 83

A.2.3 De�nitions . 84

2

CONTENTS

A.2.4 Implementation choices 84

A.2.5 Header . 86

A.2.6 Summary . 86

A.2.7 Related Work . 87

A.2.8 Diagrams . 88

B �ing Descriptions 92

B.1 Virtual Room . 92

B.2 Virtual Mediator . 95

B.3 Virtual GiòBu�on . 96

3

Chapter 1

Introduction

1.1 Context

�e number of devices connected to the Internet is growing continuously [1].

In 2019, over 20 billion Internet of �ings (IoT) devices were connected and this

number is expected to increase rapidly [2]. �e IoT is now part of our lives [3]

and becomes more and more tied to it so as to even in�uence our everyday hap-

piness [4, 5]. Undoubtedly, one of the most interesting IoT �elds is that of smart

environments, empowering rooms or environments with sensors and actuators

to automatically manage them [6, 7]. �e development of smart environments

is certainly interesting as intelligent systems for the management of environ-

ments can greatly improve people’s lives, becoming a fundamental support to

help them perform simple and complex daily tasks. A very interesting and chal-

lenging problem in this area is that of goal-driven management of environments

in order to maximise energy savings and user satisfaction.

To this end, many techniques might be used to reconcile possibly contrasting

4

CHAPTER 1. INTRODUCTION

goals (e.g. two users in the same room who want di�erent temperatures) set by

users or system admins, e.g. via fuzzy logic [8], multi-agent systems [9, 10] or

neural networks [11]. However, most commercial solutions such as IFTTT [12]

or Google Home [13] and Alexa [14] only allow to set simple individual goals to

be met by the IoT systems they manage and do not account for the possibility of

mediating among contrasting objectives [15].

Overall, the goal-oriented approach in the IoT in general, and in the smart

environments in particular, is interesting and worth being studied because it is a

very simple way of formalising an IoT system: users and devices are distinct enti-

ties, each with its own objectives and all must coexist in the same environment.

Good con�ict management can, therefore, lead to an e�ective management of

complex IoT systems: representing each device at stake as an agent with its ob-

jectives and creating a system that allows �nding the best compromise taking

into account also the needs and goals of the users [15].

1.2 Considered Problem

To support the plethora of new IoT-enabled verticals and to promptly process the

data they produce, the exploitation of pervasive computing capabilities along the

Cloud-IoT continuum has been proposed by industrial consortia and academia [16,

17]. Particularly, Fog computing is a novel highly distributed paradigm in which

heterogeneous compute, storage, and networking capabilities cooperate to sup-

port IoT application deployments all through the Cloud-IoT continuum [18].

In this context, the Department of Computer Science of the University of Pisa,

Italy, launched the project “Giò: a Fog computing testbed for research and educa-

5

CHAPTER 1. INTRODUCTION

tion” [19]. �e project centers around the idea of designing and realising Smart

Ambient Systems and applications enabled by IoT sensors and actuators and by

a Fog computing infrastructure. One of the objectives of the project is the devel-

opment of goal-oriented systems for automatically managing indoor lighting via

IoT window shu�ers and the A/C system by negotiating both individual goals

(e.g. temperature, brightness) and global goals (e.g. energy consumption). Two

di�erent types of con�ict might arise. First, di�erent users can set di�erent pref-

erences regarding their desired state of the room, but for peaceful coexistence,

it is necessary to �nd an agreement that is acceptable to everyone. Second, in

addition to the preferences of each user, there are also global objectives set by

the Department administration that must be met.

�is thesis proposes a solution on how to solve the problem of satisfacto-

rily managing con�icts that might arise among the di�erent stakeholders se�ing

goals over shared Smart Ambient IoT systems in the Giò project. �is work aims

at answering questions such as:

– Which is the best temperature to be set and maintained to satisfy most of the

users’ preferences while complying policies set by the Department adminis-

tration?

– What is the best temperature to set in an air conditioning system shared be-

tween multiple rooms in order to satisfy all users?

– How to set the brightness of the room in order to both satisfy users and to

maximise energy savings?

6

CHAPTER 1. INTRODUCTION

1.3 Objectives of the �esis

�e ultimate goal of this thesis can be stated as follows:

Design and implement an IoT goal-driven system capable of monitoring

and automatically managing interior natural lighting (via IoT-enabled

roller shu�ers) and temperature (via A/C thermostats) by mediating

possibly con�icting goals set by users and system administrators.

In designing the system, that we called GiòEnv, we decided to use a bo�om-up

approach: we started from the physical infrastructure, then we worked on the

so�ware infrastructure and �nally we modeled the mediation process. �e �rst

point we considered was how to monitor environments. It was also necessary to

design the infrastructure for enacting the changes to the environment decided

by the system. To do this we took inspiration from the Computer Science De-

partment of the University of Pisa, considering the infrastructure already present

and starting from that to create the system. When we started our work, the De-

partment already featured the GiòRooms system composed by intelligent roller

shu�ers that are used to change the internal brightness of the rooms, and an

air conditioning system regulating the internal temperature. �erefore, in the

system design, we took brightness and temperature as the only environmental

parameters, also considering that an easy extension to many other parameters

will also be possible.

Micro:bit [20], as prototypes, were used for monitoring and achieving the de-

sired states. �e so�ware infrastructure is a microservice [21] system, as we be-

lieve that IoT systems lend themselves very well to being managed with an archi-

tecture of that type [22, 23, 24]. For the representation and e�ective management

7

CHAPTER 1. INTRODUCTION

of the digital twins of IoT devices, we took advantage of a new standard for IoT

systems (Web of �ings [25, 26]). To make the Web of �ings Server communicate

with the physical system in the best possible way we evaluated two alternatives:

a new reliable protocol based on UDP, called ReTRo, and a possible extension of

the Web of �ings.

As for individual and global objectives, we proposed a though and expressive

way to express preferences regarding the desired state of a particular environ-

ment. Finally, we modelled and designed a system for the mediation of con�icts,

which we believe can have general value for other systems that need con�ict

management regarding the use of shared resources.

1.4 Outline of the �esis

�e rest of the manuscript is organised as follows.

Chapter 2 Some technologies used in this work are illustrated.

Chapter 3 �e architecture of the system (GiòEnv) and its implementation are

illustrated.

Chapter 4 �e testbed environment used and some experiments are presented.

Chapter 5 �e contributions of this thesis are summarised and some possible

future work is discussed.

8

Chapter 2

Background

2.1 Micro:bit

A Micro:bit [20] is an open-source embedded system designed in the UK by the

BBC to teach computer science [27]. �e Micro:bit is a very small device, half the

size of a credit card, but with a high computing power [28]: it mounts a 16MHz

32-bit ARM-Cortex-M0 processor with 256KB Flash ROM and 16KB RAM. It is

equipped with a micro USB port, a 5x5 LED matrix, two programmable bu�ons,

19 pin GPIO, and 3 crocodile clip compatible for rapid prototyping. It also has an

accelerometer, a magnetometer, a temperature sensor, and a brightness sensor.

It can also communicate via Bluetooth Low Energy [29] or with the proprietary

Nordic Gazell radio protocol [30]. Moreover, it can be powered by either USB or

an external ba�ery pack.

�e radio protocol implements a broadcast communication but allows the

partition of the band into 101 channels and it is possible to choose between 8

power levels.

9

CHAPTER 2. BACKGROUND

Figure 2.1: A Micro:bit scheme.

It is possible to program Micro:bit through MicroPython or through the Make-

Code platform [31]. �is allows programming the device through a simple and

intuitive drag&drop interface (like Scratch) or in JavaScript. A simulator is of-

fered too.

Simplicity in programming is given by a powerful runtime so�ware [32], de-

veloped by Lancaster University, which provides an easy to use environment.

�ese features make the Micro:bit also an excellent tool for rapid prototyp-

ing [27, 33], and thanks to the pins its functionality is easily extendable. �e

proprietary protocol also allows for easy Micro:bit-to-Micro:bit communication.

10

CHAPTER 2. BACKGROUND

2.2 Web of Things

�e Web of �ings [25, 26] is a set of W3C standards [34, 35, 36, 37, 38] to create

a uniform way to interact with devices and applications of the Internet of �ings:

its purpose is to enable interoperability across IoT platforms and application do-

mains. �e basic idea is not to create anything new but to use already existing

protocols and standards. More speci�cally, the idea is to use the technologies

of the World Wide Web to interact and connect physical IoT devices ensuring

interoperability. �e main concept is to represent real-world resources through

a standard representation and make them available through the Web.

�e Web of �ings Building Blocks1 are:

• Architecture [34]: de�nes the abstract architecture and its terminology and

conceptual framework;

• �ing Description [35]: de�nes the format in which �ings and their pos-

sible interactions are represented;

• Scripting API [36]: de�nes a common JavaScript API, for interacting with

�ings, similar to the Web browser APIs;

• Binding Templates [37]: provides informational guidelines on how to de-

�ne network-facing interfaces in �ings for particular protocols and IoT

ecosystems;

• Security and Privacy Guidelines [38]: provides guidelines for the secure

implementation and con�guration of �ings.
1�e so�ware stack that implements the Web of �ings Building Blocks is called Servient.

A Servient can host and expose �ings and/or process �ing Descriptions and interact with
�ings [34]. So, a Servient can play both the role of server and of client.

11

CHAPTER 2. BACKGROUND

�e central component of the Web of �ings is the �ing Description: all the

�ings are indeed represented in the same way thus o�ering a common inter-

face to interact. �ing Description describes the data and metadata of a �ing:

a physical or virtual entity. Also, descriptions of possible interactions are pro-

vided. �ing Description, by default, are encoded in JSON [39], a format readable

by both humans and machines. Each �ing is identi�ed by a URI and it is possible

to interact with it through a REST [40] interface [41, 42]. In addition to HTTP,

other protocols can be used to interact with the �ing.

A �ing is described in terms of properties, actions, and events: the properties

de�ne the state of the �ing and can be readable and/or writable, the actions are

the functionalities that can be requested of a �ing and the events are “noti�ca-

tions” that the �ing can launch. A �ing Description can be directly exposed by

the �ing or this task can be delegated (e.g. when a device has limited hardware).

�is standard, therefore, o�ers a uniform way of representing and interacting

with �ings, all without having to create new technologies and protocols. �e

Web of �ings is a substrate on which applications that use IoT can rest.

2.3 Prolog

Prolog [43] is a programming language, developed and implemented in 1972, that

realizes the logic programming paradigm. Prolog uses a subset of �rst-order logic,

the Horn’s clauses: �rst-order literal disjunctions universally quanti�ed with at

most one positive literal. A program in Prolog consists of a set of facts, rules, and

goals: the facts specify what is true2, the rules establish relationships between
2Prolog uses the “Closed World Assumption”: everything that is not known true is considered

false.

12

CHAPTER 2. BACKGROUND

the facts and the goals are questions, over these relations, to be answered.

�e intrinsic feature of the Prolog is that, unlike procedural programming

languages, in Prolog we describe what we know about the problem by means of

facts and relationships between them and then ask questions and we do not have

to worry about how to �nd the answers. Prolog programs are �nite sets of rules

of the form:

a :- b1, b2, ..., bn.

where a, b1, .., bn are atomic literals. A rule can be read as: a is true if b1 and

b1 and … and bn are true. a is also called Head while b1, .., bn are called Body.

A rule without a Body is also called a fact, because it is always true. With the

semicolon we can express the disjunctions:

a :- b1; b2; ..., bn.

a rule with this form meas: a is true if b1 or b1 or … or bn are true. It is possible

to express the negation through the symbol \+:

a :- \+ b1.

which means: a is true if b1 is false. In Prolog variables are denoted by a string

consisting of le�ers, numbers and underscore characters, and beginning with an

upper-case le�er or underscore. Prolog also admits the use of the lists indicated

with the usual notation through ”[” and ”]”.

Finally, a query is a rule without a head:

:- b1, b2, ..., bn.

13

CHAPTER 2. BACKGROUND

A Prolog computation, initiated by a query, consists of a proof by contradiction

by means of the inference rule called resolution (Robinson, 1965): for this reason

it is also called, in this case, resolution by refutation. In more detail in Prolog a

resolution technique called SLD resolution [44] is used.

A Prolog program can be interpreted in two di�erent ways: declaratively or

procedurally. One way to easily clarify this duality is to compare the semantics

of the rules in the two cases. A rule has the form Head :- Body. �e procedural

meaning of a rule is: to solve Head, solve Body: this corresponds to the concept

of function call. Instead, declaratively a rule means: Head is true if Body is true.

Prolog gives its best when problems need to be solved through complex sym-

bolic computations: for this reason, it is widely used in the �eld of arti�cial in-

telligence [45], expert systems, theorem proving, and deductive databases.

Recently, some authors have proposed to realise Logic Programming as a

Service (LPaaS) [46, 47]. �e idea that drove its development is to o�er an in-

ference engine in the form of service. �e aim is to o�er distributed situated

intelligence [48] in pervasive systems, like smart environments.

14

Chapter 3

GiòEnv: Design & Implementation

In this chapter, we introduce the architecture of our prototype system GiòEnv and

its implementation. We also analyse its individual components and how they in-

teract with each other.

3.1 GiòEnv Overview

3.1.1 Big Picture

As aforementioned, GiòRooms features actuators to open, close, and adjust blind

window shu�ers so to regulate natural indoor lighting, as well as digital ther-

mostats regulating the A/C system of groups of rooms.

GiòEnv extends the functionalities of GiòRooms so to monitor the status of

the rooms with respect to brightness and temperature and, if needed, to suit-

ably act upon their IoT actuators to reach the desired status. GiòEnv implements

an IoT-based monitoring of the rooms and a goal-oriented system to determine

the target room status by suitably reconciling possibly con�icting goals set by

15

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

di�erent users for what concerns the temperature and the brightness of a room.

Fig. 3.1 sketches a black-box view of the GiòEnv system. Within the system,

we identify two stakeholders: the room user and the Department administrator.

User’s goals, wri�en in the form of if-then rules, express how a user wants the

system to change the state of the room based on the current one. �e adminis-

trator instead de�nes policies, in the form of Prolog rules, that express what is

the state to be implemented given the preferences of users.

Figure 3.1: Blackbox view of GiòEnv.

As for the rooms, these have various sensors inside to perceive their status

and actuators that can modify it. It is important to note that the actuators, as in

the case of air conditioning, can be shared between multiple rooms while lighting

actuators are not shared between multiple rooms. �is de�nes a more complex

environment model, as the goals of users in di�erent rooms must be correlated

when those rooms share some actuators. In our prototype, we have considered

only two types of actuators: air conditioning and automatic shu�ers.

�e task of GiòEnv is to wait for changes in the status of one or more rooms

(e.g. a user enters/leaves a room, a parameter varies) and initiates the media-

16

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

tion process. �is is done not considering users room by room separately but

correlating all users inside rooms that share the same actuator.

3.1.2 Architecture Bird’s Eye-View

GiòEnv is organised into a microservice-based architecture composed of a set of

independently deployable services, which interact via REST APIs thus enabling

low coupling and high reusability [21, 49].

GiòButton

<<service>>
Web of Things

Virtual Room Virtual Mediator Virtual GiòButton
HTTP

<<service>>
GiòMediator

<<service>>
S2M

GiòInterface <<service>>
GiòDashboard

GiòButtons
Manager

HTTP

HTTP

Reliable Protocol

HTTP

HTTP

HTTP

HTTP

HTTP

HTTP

Figure 3.2: A bird’s-eye view of GiòEnv.

As shown in Fig. 3.2, GiòEnv includes one IoT component and seven microser-

vices:

GiòBu�on Is the component of an IoT device that takes care of monitoring and

triggering the actions required by GiòEnv.

GiòInterface Displays an interactive map of the environment showing the cur-

rent environmental parameters and the links relating to the rooms.

GiòBu�ons Manager Acts as a driver for the GiòBu�on prototype for data col-

lection and subsequent sending to the Web of �ings Server.

17

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

GiòDashboard Enables visualising data about the current status of rooms and

IoT devices.

S2M Stores the system’s data.

GiòMediator Performs the goal mediation process.

Web of Things Server Maintains the digital twins3 of the rooms and of the IoT

devices and orchestrates the goal mediation process.

To mediate among possibly contrasting goals set by the users and by the

Department administration (as mentioned in Sect. 3.1), GiòEnv employs �rst-

order logic to model the system and the goals of the users and the administrator,

and it then exploits an inference engine to carry out the decision-making process

and obtain the new states of the rooms.

We believe that the User Interface divided into two parts o�ers an interest-

ing solution: the user can use one interface to monitor the entire environment

(GiòInterface) and a second one to check the details of the rooms (GiòDashboard).

In our opinion, this dualism leads to a clear division of tasks, which can only ben-

e�t the way users interact with the system.

When a change in a room is perceived by a GiòBu�on, the noti�cation is sent

to the GiòBu�ons Manager who is responsible for propagating the message to

the GiòDashboard and to the Web of �ings Server. Here the status of the Virtual

Room , digital twin of the room to which the noti�cation refers, is updated. At

this point, the Virtual Room noti�es the Virtual Mediator of the change, which

triggers GiòMediator, in charge of the mediation and con�ict resolution process.

Once the mediation decisions have been made, the Virtual Mediator routes them
3Digital replicas of physical entities.

18

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

to the various Virtual GiòBu�ons, digital twins of the GiòBu�ons. �ese take

care of notifying the GiòBu�ons Manager of the actions to be performed, which

are then sent to the appropriate GiòBu�ons. In addition, user preferences, me-

diation policies, and information necessary for GiòDashboard are stored on S2M.

GiòInterface, on the other hand, can read the Virtual Rooms status and display

their data.

In the next section, a�er describing the simple language that GiòEnv exploits

to allow users to express goals, each service composing GiòEnv is described in

detail along with its functioning, following the work�ow summarised above.

3.2 GiòEnv Components

3.2.1 Simple Storage Microservice

�e Simple Storage Microservice (S2M) has been implemented to o�er a simple and

uniform way to store data sensed by the deployed GiòBu�ons as well as goals set

within GiòEnv . S2M design was inspired by Amazon S3 bucketing system and

permits storing heterogeneous object data in JSON format [39]. �e conceptual

model is the same as S3. A user can dynamically create objects and for each of

them create properties at will. �e user can then request the creation and deletion

of new objects, owned within them, and the addition or modi�cation of the data.

Everything is o�ered through a REST [40] interface described in Table. 3.1.

19

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

GET POST PUT PATCH DELETE

/ Return the list of
all buckets

/<bucket>
Return the meta-
data of a speci�c
bucket

Create a new
empty bucket

Delete a speci�c
bucket and all its
objects

/<bucket>/<object>
Return the data
and metadata of a
speci�c object

Create a new ob-
ject

Replace the data
of a speci�c ob-
ject

Add new data to a
speci�c object

Delete a speci�c
object

/<bucket>/<object>/metadata
Return the meta-
data of a speci�c
object

Table 3.1: S2M REST API.

3.2.2 GiòBu�on

GiòBu�on is the prototype IoT device that allows GiòEnv to interact with the real

world. GiòBu�on performs two main tasks:

• Sense, which can collect environment data through the sensors o�ered by

the hardware, as well as changes in the state of the room, and send them

to GiòEnv,

• Actuate, which can receive commands from the system, so to trigger suit-

able IoT actuators that permit to change the state of the room to reach a

newly established target state.

�e current implementation of GiòBu�on exploits an intermediary GiòBu�ons

Manager to communicate with its digital twin in the Web of �ings Server4. To

ensure independence from the underlying hardware and therefore to maximise

interoperability, we have established a simple communication protocol between

the GiòBu�ons and the GiòBu�ons Manager.
4If it is possible to connect GiòBu�on to the network, it can communicate directly with the

Web of �ings Server. If the device does not have a connection, the presence of an intermediary
(the GiòBu�ons Manager), is required.

20

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

�e protocol only requires that messages exchanged have the form:

KEY$VALUE$RECEIVERNAME

where RECEIVERNAME is the identi�er of the receiver, while KEY and VALUE are used

for the actual exchange of information represented by key-value pairs. �e pro-

tocol, thanks to the $ symbol, does not establish any limitation on the type of

communication channel used on the number of characters that can be used for

each �eld. Indeed, the devices can use any type of communication channel and

length of messages they want, as long as they respect the structure just indicated.

Implementation

�e current prototype implementation of the GiòBu�on relies upon the Micro:bit

hardware (Sect. 2.1). �is choice was made because Micro:bit is an excellent pro-

totyping platform and it features built-in [28] a temperature and a brightness

sensors, a LED screen, some bu�ons, and a radio antenna. �is allowed us to

implement a basic version of GiòBu�on using only one type of hardware, per-

fectly suiting our system needs. Indeed, we needed to monitor the temperature

and brightness in the rooms. Besides, the LED screen and the bu�ons of the

Micro:bit allow easy and intuitive interaction with users (see Table. 3.2) and the

presence of a radio antenna enabled simple communication with the GiòBu�ons

Manager.

�e current version of GiòBu�on relies upon some important ba�ery-saving

expedients. Particularly, room status updates are sent only when changes of pa-

rameters exceed a certain (con�gurable5) threshold and, anyhow, a�er a certain
5By default the temperature must increase by at least one degree Celsius to send an update,

instead as regards the brightness this must vary by at least 5 points (Micro:bit measures the bright-
ness in a range of 0-255).

21

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

interval of time6 no changes are sent. As for the Micro:bit LED screen, this is used

only in the initial phase, that of pairing (more information below). Otherwise,

the screen remains o�7 until a function is invoked (see Table. 3.2).

Pairing-Phase Working-Phase
Bu�on A Nothing Show the actual temperature
Bu�on B Nothing Show the actual brightness
Bu�ons A+B Stop the pairing phase Show the device’s name
Shake Nothing Start a new pairing-phase

Table 3.2: Possible interactions with a GiòBu�on Micro:bit.

From a communication point of view, GiòBu�on relies upon the radio Mi-

cro:bit-to-Micro:bit communication protocol [29, 30]. We chose to use the radio

protocol instead of the Bluetooth Low Energy (BLE) featured by the Micro:bit as

it permits greater ease of use and �exibility.

To enable communication of the Micro:bits with the GiòBu�ons Manager we

have chosen to use some Micro:bits as intermediaries. �ese particular Micro:bits,

called Radio Servers, receive the status noti�cations from all the other Micro:bits

and send them via serial port to the device on which the GiòBu�ons Manager runs.

�ere can be many Radio Servers, deployed withing the managed cyber-physical

environment, connected to one or more GiòBu�ons Managers. Fig. 3.3 sketches

how the GiòBu�ons communicate with the GiòBu�ons Manager via a Micro:bit

Radio Server.

To ensure reliability we have chosen to design a protocol over the Micro:bit

radio. First, we decided that the messages exchanged should always contain, be-

sides the sender ID, also the receiver ID. Each Micro:bit is in fact equipped with
6By default, set to one hour.
7In case of debugging the screen can still show some information.

22

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

Figure 3.3: Example of the Micro:bit communication.

a unique serial number, but it was not possible to directly use the serial num-

ber of the receiver. Indeed, while the sender’s number can be sent by enabling a

speci�c se�ing8, this is not possible for the receiver as the Micro:bit protocol is

a broadcast protocol [30]. By including the name of the receiver in the message,

it is possible to implement a simple ack exchange mechanism to notify the ac-

knowledgment of receipt of the message. In this way, when a Micro:bit receives

a message it checks the receiver’s name and if the name coincides with it sends

back to the sender, recognizable by the ID9, a con�rmation ack. If the sender

does not receive the ack within a certain con�gurable time interval (5 seconds

by default), then it re-sends the message for a limited number of times (5 by de-

fault). Besides, it is also possible to con�gure each Micro:bit by choosing whether

to enable it for broadcast reception or not. In this way, when a GiòBu�on has to

send an update it does not need to know the name of a Micro:bit server but can

simply send the message in broadcast, indeed in GiòEnv only Micro:bit servers are
8See: h�ps://makecode.microbit.org/reference/radio/set-transmit-serial-number
9Since the size of the string to be sent is limited to 19 characters (see

h�ps://makecode.microbit.org/reference/radio/send-string), we have decided to use what
is called in Micro:bit a friendly name: a hash function of the serial number that returns a string
of 5 characters that can be easily remembered. It is up to the administrator to verify that
Micro:bits with the same name do not appear in the same network.

23

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

broadcast-enabled, so only servers will handle, and con�rm with an ack, update

messages10.

Finally, for what concerns security, we implemented a simple pairing mech-

anism for the devices. When a new GiòBu�on connects to the network, its mes-

sages are not processed until acceptance by the administrator takes place. To

do this once the Micro:bit is started, it starts sending a sequence of 6 characters,

randomly generated, and this is also displayed on its screen, and until the ad-

ministrator enters that sequence read on the screen in the system, which instead

keeps the version sent via radio, the update messages are not managed. It is the

GiòBu�ons Manager’s job to manage such a pairing mechanism.

3.2.3 GiòBu�ons Manager

�e GiòBu�ons Manager’s job is to interface GiòEnv with his physical devices:

the GiòBu�ons. GiòBu�ons Manager acts as an intermediary who receives the

messages from the Micro:bit and forwards it to the system.

Besides the fact that Micro:bits cannot connect to the Internet, we relied upon

an intermediary to enforce the Single Responsibility Principle [50]. �e GiòBu�ons

Manager maintains a copy of the mapping between rooms and IoT devices, this

allows associating the information received from the devices to the rooms in

which they are located. Mapping is necessary because the environment is dy-

namic and associations can vary over time. �is choice also guarantees the max-

imum degree of decoupling between the various parts of the system.
10�e format of the messages respects the protocol established for the

GiòBu�ons (KEY$VALUE$RECEIVERNAME), with some other limitations: RECEIVERNAME
has a maximum length of 5 characters while KEY and VALUE have both a maximum length of
6 characters. For broadcast messages RECEIVERNAME is “broad” and for ack messages KEY is
“ack” and VALUE is empty.

24

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

Implementation

As already anticipated (see Figure 3.3 at page 23), the operation of the GiòBu�ons

Manager is strictly linked to the presence of one or more Micro:bit servers. In-

deed, servers are the way in which the GiòBu�ons Manager can communicate

with the Micro:bits.

From the Micro:bits point of view, the role of the GiòBu�ons Manager is to

listen on a serial port, waiting for noti�cations from the Micro:bits and forward-

ing these to the Web of �ings Server. Also it is waiting for noti�cations of sta-

tus change by the Virtual Rooms from the Web of �ings Server (see Figure 3.2

at page 17) and sends these, again via serial, to the Micro:bit server to which

it is connected. In principle, there is no reason why a single GiòBu�ons Man-

ager should be associated with a single Micro:bit Radio Server, but we made this

choice to keep the system architecture simple and to be able to monitor messages

exchange more e�ectively. So, in our implementation a GiòBu�ons Manager is

associated with only one Micro:bit Radio Server and vice versa.

Instead, from the point of view of the Web of �ings Server, the GiòBu�ons

Manager sends11 the Micro:bits update noti�cations to their digital twins and also

to the rooms that are associated with them. In addition, it remains listening to

receive commands to change the state of the rooms and forwards these requests

to the associated Micro:bits.

For the mapping between Micro:bits and rooms we have chosen to use a sim-

ple JSON [39] �le12, which associates each Micro:bit with a series of resources

that must manage (as input or output), and for each speci�c resource (the rooms
11We have experimented two ways to send noti�cations to the Web of �ings Server : the details

on section 3.2.4.
12It is up to the administrator to create and modify the �le in order to respect reality.

25

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

that have that resource). In our prototype we used two input resources: tem-

perature (temp) and brightness (light); in addition, two output resources were

used: air conditioning (ac) and automated shu�ers (windows). In Figure 3.4 it is

possible to see how a resource of a Micro:bit (identi�ed by its friendly name) can

be shared between multiple rooms, in addition, di�erent Micro:bits can handle

di�erent resources in the same room.

1 {
2 ” tuvov ” : {
3 ” temp ” : [2 7 9 , 2 8 4] ,
4 ” l i g h t ” : [2 7 9] ,
5 ” ac ” : [4 2 , 2 7 9 , 2 8 4] ,
6 ” windows ” : [2 7 9]
7 } ,
8 ” t e t o z ” :{
9 ” temp ” : [4 2] ,

10 ” l i g h t ” : [4 2] ,
11 ” ac ” : [] ,
12 ” windows ” : [4 2]
13 } ,
14 }

Figure 3.4: Example of JSON object mapping the associations between Mi-
cro:bits (tuvov and tetoz) and rooms (42,279,284): tetoz senses temperature
changes in room 42, while tuvov who controls the air conditioning.

As anticipated, the GiòBu�ons Manager is also responsible for pairing the

devices: when a new device enters the network, it sends a random code, the

GiòBu�ons Manager associates the ID of that device with that code, and until the

administrator enters that code, which he will read from the device screen, any

other message from that device will be ignored.

26

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

3.2.4 Web of Things Server

�e Web of �ings Server is the central component of the whole system: it main-

tains the digital twins of GiòBu�ons and rooms and orchestrates the mediation

of con�icts by interacting with GiòMediator. We have chosen to use the Web of

�ings [25, 26] for the construction of our server as it o�ers a simple and uniform

interface for interacting with IoT devices [25].

Within GiòEnv the task of the Web of �ings Server is to receive noti�cations

of state changes from the GiòBu�ons Manager and trigger the mediation process

in order to obtain the new state of the rooms a�ected by the change. �en, the

new status is sent to the GiòBu�ons that will implement the request.

It is worth noting that the GiòBu�ons do not receive a command to be exe-

cuted but the desired new state. �is allows for a high degree of decoupling be-

tween the server and the physical devices, this also makes the decision-making

process independent of the e�ective implementation of the goals. In a nutshell:

the server decides the what to do it and the devices the how.

Mediation

�e mediation process takes place through some Web �ings13 [34] that interact

with each other and with the other microservices allow the intelligent manage-

ment of the environment. We use three types14 of Web �ings: Virtual Room,

Virtual GiòBu�on and Virtual Mediator. �e �rst two correspond to the digital

twins of, respectively rooms and Micro:bits of the system. �e Virtual Mediator is

instead a purely virtual entity that has the task of triggering the goal mediation
13An abstraction of a physical or a virtual entity.
14More details in Appendix B.

27

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

process, by interacting with GiòMediator. �ere is only one Virtual Mediator but

as many Virtual GiòBu�ons and Virtual Rooms as there are physical counterparts.

Whenever a change of state takes place in a room, this is noti�ed by the

Virtual Room to the Virtual Mediator which stores the most recent status of all the

rooms in addition to the preferences of all users and the administrator. Once the

noti�cation has been received and the status updated, all this information is sent,

together with the speci�c con�ict resolution rules, to GiòMediator which will

carry out the mediation process and return the changes to be made in the rooms.

At that point, the Virtual Mediator will notify to the various Virtual GiòBu�on the

new states they must implement.

Implementation

�e implementation of the Web of �ings Server has been long and complex,

with some important changes of direction. We decided to choose the Web of

�ings even before it o�cially became a standard. We chose not to implement

the server from scratch, believing that the existing implementations [36] were

entirely suitable for our purposes.

Our initial choice was to use the Mozilla proposal [51] and the �rst imple-

mentation of our Web of �ings Server, which also includes a protocol (ReTRo) to

enable communication of the server with the GiòBu�ons Manager , is described

in Appendix A. Meanwhile, the standardisation work continued, to culminate

on April 9, 2020 making the Architecture [34] and �ing Description [35] W3C

recommendations. �is important step, combined with the fact that the �rst im-

plementation was starting to show its limitations, led us to reconsider the initial

choice and re-analysing the proposals, so we chose to switch from Mozilla’s Web

28

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

of �ings Server to Eclipse’s �ingWeb [52]. Contrary to the REST API of Mozilla,

this implementation is more complex, o�ering various additional features, allow-

ing communication through various protocols and not least a much more active

community. Furthermore, it fully respects the scripting API [36] proposed15 by

W3C.

In this new version, we decided to abandon the ReTRo protocol used in the

�rst version and decided to extend the Web of �ings’s REST API. We will now

analise in detail this last version.

Eclipse’s �ingWeb More than a server, �ingWeb is an entire ecosystem of

features and services related to the Web of �ings. Many communication pro-

tocols are implemented and many others are continuously implemented: the

community is indeed very active. Unlike Mozilla, �ingWeb fully adheres to

the (non-standard) proposal of API [36] of the W3C and this allows for greater

uniformity and interactivity.

�e problem of communication between GiòBu�ons Manager and Web of �ings

Server was there to be solved. Our idea was to transform the Web of �ings Server

into a dynamic service: using APIs not only for interacting with users but also

to create �ings, eliminate them, modify them, and notify changes of state. �is

last point requires more a�ention: among the APIs, some allow updating the

properties of a �ing, but these require that property to be writable, while the

properties that re�ect the values of a sensor, such as temperature, are read-only

and there is no standard way to update these properties.

Our solution extends the protocol also considering this possibility. �is result
15It is still a W3C Working Dra�.

29

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

was achieved by adding two possible a�ributes to the properties, namely input

or output. A property marked as input allows the remote updates (through the

PATCH method). A property marked as output cannot be updated in this way, but

(if allowed) through the classic writing. �is also allows the possibility to specify

di�erent security rules based on the possible ways to perform an update16. �is

option allows the updating of the digital twins of the devices from the devices

themselves and without the need to implement other protocols or mechanisms.

We speci�ed that our idea was to transform the Web of �ings Server into a

dynamic service because we decided to introduce, also, some APIs that allow the

creation of things remotely something which is not allowed by the standard. To

do this it was necessary to de�ne a method to be able to exchange not only the

�ing Descriptions but also the scripts related to these. Indeed, it is possible to

specify certain procedures to be performed17 when an action is invoked or when

a property is wri�en or read. �ese procedures must be sent, together with the

�ing Description, to the server when the �ing is created. We decided to extend

the �ing Description by admi�ing the possibility of specifying procedures to be

performed.

�e new �ing Description has the following a�ributes:

• thing: contains the standard �ing Description,

• initialScript: the code to be executed before the actual creation of the

�ing,
16�is is not currently allowed by �ingWeb but guaranteed by the standard. Here is

the issue that we have opened on the o�cial �ingWeb repository to discuss the problem:
h�ps://github.com/eclipse/thingweb.node-wot/issues/211

17�e security of the operation is delegated to �ingWeb which allows the execution of exter-
nal scripts.

30

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

• endScript: the code to be executed a�er the creation of the �ing,

• handlers: the procedures to be performed associated with actions and

properties,

– actions: it is possible to specify for each action some code to execute

when this is invoked,

– properties: it is possible to specify for each properties some code to

execute when when this is read and/or wri�en.

With these modi�cations, the Web of �ings Server allows any type of inter-

action without the need to rely on external technologies.

In this way, when the GiòBu�ons Manager receives an update from a Mi-

cro:bit , all it has to do is retrieve the speci�c �ing Description and send the up-

date via PATCH. Furthermore, when a new Micro:bit is added to the system, the

GiòBu�ons Manager automatically requests the creation of the associated �ing

Description.

3.2.5 GiòMediator

In GiòEnv, GiòMediator is the service that performs the mediation process and

therefore decides the commands to be executed. To do this, it interacts closely

with the Web of �ings Server. It receives from the Server the data for media-

tion (rooms status, users’ preferences, administrator’s policies) and returns the

decisions which will then be sent to the GiòBu�ons. �e information necessary

for the process are the data of the rooms (i.e. environmental parameters, associ-

ated actuators, users inside), the preferences of the users, and the administrator’s

31

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

policies that permit resolving possible con�icts. GiòMediator will examine all the

preferences expressed by users regarding the status of the desired room and me-

diate them by applying set policies. Preferences are expressed in the form of

if-then rules and allow the user to de�ne the desired state of the room starting

from the current one18.

Recall that the environmental parameters taken into consideration are the

brightness and temperature of the rooms and GiòEnv can modify them thanks to

the air conditioning and automatic shu�ers.

Logic Programming-as-a-Service GiòMediator is implemented as an LPaaS,

which means that what is o�ered is a full-�edged inference engine, usable in any

way the service programmers need. We recall that an LPaaS o�ers an inference

engine as a service [46, 47]. �is features a high expressiveness and �exibility

in the formalisation of the problem, being able to use the power of the �rst-

order logic. Both user preferences and mediation policies are expressed with

logic programming. Furthermore, the representation of the environment also

becomes much more intuitive and simple thanks to the possibility of expressing

it via a simple set of predicates.

Implementation

Our implementation, wri�en in Python, is based on the Flask framework. �e

microservice is stateless to facilitate simplicity of development and scalability

and a minimal REST [40] interface is o�ered. �e information is exchanged

through JSON [39] objects. �e microservice expects to receive an object con-
18More details in the section B.1.

32

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

taining the a�ributes facts, policies and goals and returns an object containing

the decisions a�ribute, that contains everything that was generated by the in-

ference engine. As engine we have chosen to use ProbLog [53] and in particular

its library in Python, which allows fast and easy integration with Flask.

�e choice to o�er a stateless service was dictated by the Single Responsibility

Principle [50]. �e system architecture was designed following the rule that each

component of the system should have only one responsibility. So in the case

of GiòMediator the need to carry out the mediation process, this regardless of

the type of application that requires the service. It also guarantees greater ease

in scaling the service. It is, however, possible to design a stateful version of

GiòMediator, as proposed in [46, 47]. �is would, however, lead to a greater

quantity and frequency in the interactions with the service, having to continually

update the data regarding the status of the rooms stored in.

Below we will illustrate how we modelled the problem of goal mediation.

Knowledge Representation of Goal Mediation

�ree main entities need to be represented in to solve the goal mediation problem

we are considering in GiòEnv: rooms (with their sensors and actuators), user

preferences, and administrator mediation policies.

Representing Rooms First, in GiòMediator , rooms can be declared as facts

of the form:

room(Room).

where Room is a literal value denoting the unique room identi�er. Sensed bright-

ness and temperature values related to a room can be declared as in:

33

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

light(ValueL, Room).

and

temperature(ValueT, Room).

where ValueL and ValueT are literal values19 indicating the status of the relative

parameter.

Similarly, outdoor light and temperature are represented as:

outdoor_light(ValueOL, Room).

outdoor_temperature(ValueOT, Room).

where ValueOL and ValueOT are literal values ranging in the same set of values of

light and temperature.

Besides, other data, such as time, is denoted as:

daytime(Time).

where Time is a literal value showing the part of the day20.

As for the actuators, these are de�ned in the following way:

actuator(Actuator, Type, Room).

where Actuator is the unique actuator identi�er, Type de�nes an actuator’s capa-

bility to control a certain environmental parameter (e.g. temperature, light) and
19For temperature the range is (very low, low, medium, high, very high) and for light

the range is (low, medium, high).
20�e possible values are: morning,afternoon,evening,night.

34

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

Room speci�es a room with which it is associated. It is important to remember

that actuators can be shared between multiple rooms.

Finally to describe the presence of a user inside a room we use:

inRoom(User, Room).

where User is a unique user identi�er.

Example. A room identi�ed as room1 associated with an actuator a1 with type

temperature and light and with user1 and user2 in, can be speci�ed as:

room(room1).

actuator(a1, temperature, room1).

actuator(a1, light, room1).

inRoom(user1, room1).

inRoom(user2, room1).

Similarly, a room room2 with two actuators a1, shared with room1, with type

temperature and a2 with type light and with user3 in, can be represented as:

room(room2).

actuator(a1, temperature, room2).

actuator(a2, light, room2).

inRoom(user3, room2).

Finally, the following data for the two rooms is declared as in:

daytime(morning).

% room1

light(low, room1).

outdoor_light(high, room1).

35

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

temperature(high, room1).

outdoor_temperature(high, room1).

% room2

light(medium, room2).

outdoor_light(high, room2).

temperature(medium, room2).

outdoor_temperature(high, room2).

Representing User Preferences A user can be declared as:

user(User).

where User is the unique user identi�er. Each user can express her preferences

regarding the desired status. �ese are expressed in the form:

set(User, Room, Type, Value) :- Preconditions.

where Type de�nes an environmental parameter the user User wants to change

(e.g. temperature, light), Room speci�es in which room the user wants the pa-

rameter to be changed, Value indicates the new value that the user wants that

parameter to assume and Preconditions can be any condition on environmental

data. �e rule then reads: if the Preconditions are true then the user User wished

the parameter Type to have value Value in the room Room.

Example. Suppose that user1 always wishes a very warm and bright room, this

can be formalised as:

user(user1).

set(user1, R, temperature, very_high) :- inRoom(user1, R).

set(user1, R, light, high) :- inRoom(user1, R).

36

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

user2 instead wants a very cool room if it is hot inside and is ok with low light

if it is bright outside:

user(user2).

set(user2, R, temperature, very_low) :- inRoom(user2, R),

(temperature(high, R)

;

temperature(very_high, R)).

set(user2, R, light, low) :- inRoom(user2, R), outdoor_light(high, R).

Finally, user3 wishes a cool room if it is very hot both inside and outside and

wishes a lot of light only if she is in room1, otherwise she wishes a medium tem-

perature if it is not very hot inside and outside:

user(user3).

set(user3, R, temperature, low) :- inRoom(user3, R),

temperature(very_high, R),

outdoor_temperature(very_high, R).

set(user3, R, temperature, medium) :- inRoom(user3, R),

\+ temperature(very_high, R),

\+ outdoor_temperature(very_high, R).

set(user3, room1, light, high) :- inRoom(user3, room1).

Representing Admin Policies �e great �exibility of our system model is

seen precisely in the way the users and the administrator express their policies:

there is no limit to the procedures that they can express, but those of the lan-

guages used (Prolog). �is allows the administrator to de�ne various policies

sequentially as well. �e only rule to be respected is the one that de�nes the

37

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

structure of the rule that initiates the mediation process, which must have the

following form:

mediate(Actuator, Type, PrefList, Action).

where Actuator identi�es a certain actuator and type Type speci�es the actuator’s

type considered. PrefList is a list of pairs (User, Value) where the users are

associated with their preferences. Finally, Action can be of any form, but those

that correspond to a command to be sent to the actuator must have the following:

todo(Actuator, Type, Value).

to set the parameter Type of actuator Actuator to the value Value.

It is interesting to note that mediation takes place not considering the rooms

but the actuators. �is solves the problem of shared resources, indeed, mediation

takes place by considering together all users who express a preference for an

environmental parameter controlled by the same actuator.

To guarantee a ”�ne-grained” control as regards the implementation of the

commands, the administrator de�nes a correspondence between literal and nu-

merical values. Such correspondences have the form:

value(Type,Literal,Numerical).

For example:

value(temperature,very_high,24).

value(temperature,high,22).

value(temperature,medium,20).

value(temperature,low,18).

38

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

value(temperature,very_low,18).

value(light,high,250).

value(light,medium,180).

value(light,low,100).

where we can see how, for example for legal reasons, the temperature can never

drop below 18 degrees Celsius or rise above 24. �e brightness is instead ex-

pressed in a range of 0-255.

Example. We now show some simple administrator policies. �e �rst we want

to propose is that of the director: if the director has a preference, that has to be

chosen.

mediate(A,Type,UVs,todo(A,Type,W)) :- member((U,V),UVs),

headOfDpt(U),

value(Type,V,W).

Figure 3.5: �e Director’s Policy.

Another policy that we can take as an example is that of the chilly: if someone

wants a very high temperature that is implemented.

mediate(A,temperature,UVs,todo(A,temperature,W)) :-

member((_,very_high),UVs),

value(temperature,very_high,W).

Figure 3.6: �e Chilly’s Policy.

39

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

�e last policy that we take as an example is that of the majority: the most voted

preference is implemented.

mediate(A,Type,[X|Xs],todo(A,Type,W)) :-

getStats([X|Xs],Stats),

getMax(Stats,(V,_)),

value(Type,V,W).

getStats([],[]).

getStats([(_,T)|L], SS) :- getStats(L,S), add(T,S,SS).

add(T,[],[(T,1)]).

add(T,[(T,N)|L], [(T,NewN)|L]) :- NewN is N+1.

add(T,[(T1,N1)|L], [(T1,N1)|NewL]) :- T \== T1, add(T,L,NewL).

getMax([(V,N)|L],M) :- myGetMax((V,N),L,M).

myGetMax((V,N),[],(V,N)).

myGetMax((V,N),[(_,N1)|L],M) :- N>=N1, myGetMax((V,N),L,M).

myGetMax((_,N),[(V1,N1)|L],M) :- N<N1, myGetMax((V1,N1),L,M).

Figure 3.7: �e Policy of the Majority.

We can use multiple policies by ordering them: we test one a�er the other and the

�rst one that returns a value is applied. For example, if the director is there, we

choose his preferences, otherwise, if someone wishes a very high temperature,

that is applied and if not, the majority vote value is chosen.

40

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

Con�ict resolution process

�e mediation process takes as input the descriptions of all the rooms, the user

goals and the goals of the administrator and for each couple (actuator, type)

�nds the preferences expressed by the users for that couple and applies the poli-

cies of the administrator in order.

�e con�ict resolution process is de�ned by three predicates: go/0, decide

Actions/1 and decideAction/3.

�e predicate go/0, as shown in Fig. 3.8, �nds all the pairs (actuator,type)

(line 2) and puts them into a list, removes all the duplicates (line 3) and passes

the list to decideActions/1 (line 4).

1 go :-

2 findall((A,Type),actuator(A,Type,_),As),

3 sort(As,SAs),

4 decideActions(SAs).

Figure 3.8: �e go/0 predicate.

Predicate decideActions/1, Fig. 3.9, for each pair (actuator, type) �nds all the

preferences express by users about that pair, thanks to the association with the

rooms, and puts them into a list (lines 3-5), then passes the list to decideAction/3

(line 6).

41

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

1 decideActions([]).

2 decideActions([(A,Type)|As]) :-

3 findall((U,V),

4 (user(U),inRoom(U,R),actuator(A,Type,R),set(U,R,Type,V)),

5 UVs),

6 decideAction(A,Type,UVs),

7 decideActions(As).

Figure 3.9: �e decideActions/1 predicate.

As shown in Fig. 3.10, the predicate decideAction/3 calls the admin’s mediation

policies (line 2) and if an action is returned, saves it in its knowledge base to fetch

it at the end of computation (line 3).

1 decideAction(A,Type,Xs) :-

2 mediate(A,Type,Xs,Action),

3 assert(Action).

4 decideAction(_,_,[]).

Figure 3.10: �e decideAction/3 predicate.

Example. Applying the process just described to the examples of rooms, users

and policies previously exposed we will obtain as a result:

todo(a1, light, 100).

todo(a1, temperature, 24).

Indeed, for the pair (a1, light) we have two preferences (user1, high) and

(user2, low) and since neither user1 nor user2 is the is director (Fig. 3.5) and

42

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

there are no preferences regarding temperature, the Policy of the Majority is ap-

plied (Fig. 3.7). Since we have a tie, the �rst value generated is chosen, in this case

low that correspond to 100. For the couple (a1, temperature) the preferences ex-

pressed are (user1, very high), (user2, very low) and (user3, medium). In this

case GiòMediator applies the Chilly’s Policy (Fig. 3.6), so the value is very high

that correspond to 24 degree Celsius.

3.2.6 GiòDashboard

GiòDashboard is one of the two microservices that implement the system’s User

Interface. �is component is designed to o�er an easy way to monitor the status

of Micro:bits and rooms (see Figure 3.11). It allows users to visualise various

dashboards regarding various parts of the building.

�e microservice is designed to be dynamic: it is not necessary to specify at

startup which dashboards to display regarding which components. Despite being

used, in our implementation, to show data regarding Micro:bits and rooms, the

service is actually completely data agnostic: it can show data inherent to any

component, for this reason, we could call it a Dashboards-as-a-Service.

�e microservice uses an object-property representation of data: various ob-

jects can be created (each one identi�ed by a unique name) and each of them can

have many properties. One dashboard is built for each of these.

�e dynamicity of the service is given by the fact that it is possible to create

new objects and new properties at runtime or add existing ones. When an update

of the status of a property of an object is sent, this is created if not yet existing.

�e user does not have to do any preparatory work, the only thing she has to do

is send the updates to the service specifying only the object, the property, and

43

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

(a) A room Dashboard

(b) A Micro:bit light dashboard

Figure 3.11: �e two views of the GiòDashboard.

the current value. �e microservice will take care of the rest.

In addition, dashboards are generated on demand and remain stored within

the system, the user can then retrieve the history of all generated dashboards.

Implementation

�e microservice exploits the storage o�ered by S2M: for this reason, it o�ers an

object-property representation of data. �e service allows viewing dashboards

covering an entire object or a single property. �e microservice o�ers a REST [40]

interface: with the PATCH method, it is possible to send an update of a speci�c

44

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

(a) A heat map showing the current tem-
perature in the rooms.

(b) A heat map showing the current light in
the rooms.

Figure 3.12: Two screens from GiòInterface showing the the temperature (a) and
light (b) heat maps.

property of a particular object. �e microservice will receive the update and

mark it with a timestamp before storing it in the history of that property.

As anticipated, it is possible to request the display of the dashboard relating

to a speci�c property of a particular object or the entire object. In the �rst case,

the current value of that property will be displayed with a graph showing its

evolution over time, in the second case, for each property the data indicated

above will be displayed. �e user can also request the history of all generated

dashboards (each identi�ed by a particular URL) and can, therefore, view them.

�e user can also request the status of a particular object and the history of its

properties.

3.2.7 GiòInterface

GiòInterface, the second part of the User Interface of GiòEnv, shows the map of

the environment (in our case the Computer Science Department of the University

of Pisa) and allows navigation from one point to another, as well as showing

information regarding each o�ce.

�is component was an existing service of the Giò project [19]: we have only

extended the interface to adapt it to the possibility of displaying information

45

CHAPTER 3. GIÒENV : DESIGN & IMPLEMENTATION

regarding the current environmental parameters.

Our contribution was to add the possibility of displaying heat maps (see Fig-

ure 3.12), concerning the various environmental parameters. It is thus possible

to visualise the global situation of the whole environment, seeing the informa-

tion necessary for each o�ce and how it is combined with that of others. �e

administrator, therefore, can have a full view of the entire environment and in

case, she can also obtain detailed information on a speci�c o�ce.

In addition to the heat maps, which give general information on the environ-

ment, there are also the o�ce �les and in these, we have added the information

that concerning the current environmental parameters of that room and a link

to the associated dashboard, so that can have the history and additional infor-

mation, about that room, in few clicks.

46

Chapter 4

Testing and Use Cases

4.1 Testing

4.1.1 Testbed

�e testbed environment we set up was the following:

• 4 Micro:bits;

• 1 Laptop Dell with Windows 10 and Intel i7 x64, 16 GB of RAM where the

following applications were run:

– GiòBu�ons Manager ;

– GiòInterface and its backend.

• 1 Virtual Machine over Unipi with 2vCpu, 4GB of RAM and Ubuntu in

which the following applications were run:

– Web of �ings Server ;

47

CHAPTER 4. TESTING AND USE CASES

– GiòMediator ;

– GiòDashboard;

– S2M.

4.1.2 Experiments

Various experiments have been carried out to test the GiòEnv system, checking

the functionality both individually and in relation to the rest of the system.

As for the physical infrastructure, this was tested by checking various cases

in the communication between the Micro:bits and also simulating sudden inter-

ruptions of some devices. In particular, the Micro:bit servers have been tested

by simulating peaks in the quantity and frequency of messages in communi-

cations. �e Micro:bits have been tested in two con�gurations: 1 server and 3

GiòBu�ons and 2 server and 2 GiòBu�ons

�e various microservices were instead tested using PostMan21 to send var-

ious types of requests and to verify the responses of the services. �is testing

methodology was carried out both for individual microservices and to simulate

entire scenarios. Moreover, for S2M we also implemented a simple CLI to create

small testing scripts to interact easily and intuitively.

To test the entire system we also created simple Python scripts that simulated

certain scenarios, creating various Virtual Rooms and Virtual GiòBu�ons and sim-

ulating the noti�cation of changes in the state of the rooms. �is is to have some

”standard” situations with which to test the system and the changes made. In

this way, certain situations could be easily and uniformly tested without having

to reproduce them physically.
21PostMan (h�ps://www.postman.com/) is a platform for API development.

48

CHAPTER 4. TESTING AND USE CASES

We also carried out numerous tests, manually simulating changes in envi-

ronmental parameters and user entry and exit. �e simulated scenario was that

of three rooms, one of which independent and two that shared the air condition-

ing, and �ve users. �e simulations were carried out by acting on the sensors

in order to reproduce a given situation and a�er having received the commands

from GiòEnv, the sensors were still operated to implement the required status.

In the meantime, user entrances and exits were simulated via PostMan.

4.2 Use Cases

We will now discuss some possible lifelike GiòEnv use cases to illustrate its po-

tential. �e examples will be treated considering likely situations within the

Computer Science Department of the University of Pisa. We will focus mainly

on mediation and con�ict resolution policies which will show how GiòEnv can

adapt to many di�erent situations. We will employ a minimal environment sce-

nario, so as not to make the treatment too complex and long-winded but at the

same time be able to present non-trivial situations. �e environment considered

will, therefore, consist of two rooms that share the actuator for the tempera-

ture but have their own actuator for the light. We will also present three user

archetypes.

�e Environment �e rooms are so de�ned:

room(room1).

actuator(ac, temperature, room1).

actuator(shutters1, light, room1).

49

CHAPTER 4. TESTING AND USE CASES

room(room2).

actuator(ac, temperature, room2).

actuator(shutters2, light, room2).

�e environmental parameters will vary according to the proposed scenario, in

order to trigger certain behaviors to illustrate the potential of the proposed poli-

cies.

�eUsers We will call the �rst user that we are going to introduce spendthrift

user, this user is, in fact, the archetype of a user who always wishes the maxi-

mum brightness and the minimum temperature if inside it is hot, or maximum

temperature if inside it is cold.

user(spendthrift_user).

set(spendthrift_user, Room, light, high) :- inRoom(spendthrift_user, Room).

set(spendthrift_user, Room, temperature, very_low) :-

inRoom(spendthrift_user, Room),

(temperature(high, Room)

;

temperature(very_high, Room)).

set(spendthrift_user, Room, temperature, very_high) :-

inRoom(spendthrift_user, Room),

\+ temperature(high, Room),

\+ temperature(very_high, Room).

�e second user is instead a user a�entive to the environment who therefore tries

50

CHAPTER 4. TESTING AND USE CASES

to waste as li�le energy as possible, always wishing the minimum brightness and

adapting to the room temperature.

user(eco_user).

set(eco_user, Room, light, low) :- inRoom(eco_user, Room).

set(eco_user, Room, temperature, Value) :- inRoom(eco_user, Room),

temperature(Value, Room).

Finally, the last user we will call the intern expresses his preferences only if he

is in the room assigned to him: room1. In this case, the user who is chilly always

wants a high temperature and, also, never wishes a low brightness.

user(the_intern).

set(the_intern, room1, light, medium) :- inRoom(the_intern, room1),

light(low, room1).

set(the_intern, room1, temperature, high) :- inRoom(the_intern, room1).

Furthermore, in all scenarios we will use the following conversion table between

literal and numerical values:

value(temperature,very_high,24).

value(temperature,high,22).

value(temperature,medium,20).

value(temperature,low,18).

value(temperature,very_low,18).

value(light,high,250).

51

CHAPTER 4. TESTING AND USE CASES

value(light,medium,180).

value(light,low,100).

4.2.1 Remember to Turn O� the Light

Let us start our scenarios by proposing a very simple but useful policy to save

energy. �e administrator automates the turning o� of the lights and the low-

ering of the temperature when a room is empty. In particular, during the day

the temperature is brought to a medium temperature, and at night it is lowered

again.

Now we can de�ne the policy for brightness:

mediate(A,light,_,todo(A,light,W)) :-

actuator(A,light,R),

\+ inRoom(_,R),

value(light,low,W).

and for temperature:

mediate(A,temperature,_,todo(A,temperature,W)) :-

actuator(A,temperature,R),

\+ inRoom(_,R),

\+ daytime(evening),

value(temperature,medium,W).

mediate(A,temperature,_,todo(A,temperature,W)) :-

actuator(A,temperature,R),

\+ inRoom(_,R),

daytime(evening),

value(temperature,low,W).

52

CHAPTER 4. TESTING AND USE CASES

Finally, the Policy of the Majority is that de�ned in Fig. 3.7.

Suppose it is a�ernoon and that eco user is in room2 and room1 is empty.

daytime(afternoon).

inRoom(eco_user, room2).

We also de�ne the following room states:

temperature(medium,room1).

outdoor_temperature(high,room1).

light(low,room1).

outdoor_light(high,room1).

temperature(medium,room2).

outdoor_temperature(high,room2).

light(high,room2).

outdoor_light(medium,room2).

in this case the result we will have will be:

todo(ac, temperature, 20).

todo(shutters1, light, 100).

todo(shutters2, light, 100).

Indeed, being eco user the only user present, only his preferences will apply,

which concern room2 and therefore the ac and shutters2 actuators, which ac-

cording to the rules expressed by the user will be set to medium and low respec-

tively. shutters1 is serving an empty room and is therefore set to low because it

is a�ernoon.

�e new state of the rooms will then become:

53

CHAPTER 4. TESTING AND USE CASES

temperature(medium,room1).

light(low,room1).

temperature(medium,room2).

light(low,room2).

Suppose now that the intern enters in room1:

inRoom(the_intern, room1).

the system will then send the following commands:

todo(ac, temperature, 22).

todo(shutters1, light, 180).

todo(shutters2, light, 100).

with the state of the rooms which will be updated in the following way:

temperature(high,room1).

light(medium,room1).

temperature(high,room2).

light(low,room2).

4.2.2 Season-Wise

Again with a view to energy savings, an interesting policy could take into ac-

count the current season. For example, the administrator could choose between

the requests for the temperature, the highest one in spring and summer, and the

54

CHAPTER 4. TESTING AND USE CASES

lowest one in autumn and winter, in order to satisfy at least a part of the users,

maximizing energy savings. We must, therefore, add a predicate indicating the

season:

season(S).

where S could be spring, summer, autumn, winter.

To be able to do the minimum and the maximum we must be able to work

with numbers instead of literals, we must therefore implement a function that

converts a list of preferences express through literal values into a list of the re-

spective numeral values expressed by the value association:

convert(Type,Xs,Ys) :- convert(Type,Xs,[],Ys).

convert(_,[],Ls,Ls).

convert(Type,[(U,V)|Xs],Ls,Ys) :-

value(Type,V,Y),

convert(Type,Xs,[Y|Ls],Ys).

Policies can then be wri�en as:

mediate(A,temperature,[X|Xs],todo(A,temperature,W)) :-

convert(temperature,[X|Xs],Ls),

(season(summer); season(spring)),

max_list(Ls,W).

mediate(A,temperature,[X|Xs],todo(A,temperature,W)) :-

convert(temperature,[X|Xs],Ls),

(season(winter); season(autumn)),

min_list(Ls,W).

55

CHAPTER 4. TESTING AND USE CASES

Also in this case, we maintain the Policy of the Majority, de�ned in Fig. 3.7.

Suppose now that it is summer and that the intern and spendthrift user are

in room1 while eco user is in room2:

season(summer).

inRoom(eco_user, room2).

inRoom(spendthrift_user,room1).

inRoom(the_intern, room1).

let the status of the rooms be the following:

temperature(high,room1).

light(medium,room1).

temperature(high,room2).

light(low,room2).

then the actions that GiòEnv will take will be:
todo(ac, temperature, 22).

todo(shutters1, light, 250).

todo(shutters2, light, 100).

because eco user and the inter prefer a high temperature while spendthrift user

prefers a low temperature but being summer we choose the maximum.

�e rooms will then take on the following status:

temperature(high,room1).

light(high,room1).

temperature(high,room2).

light(low,room2).

56

CHAPTER 4. TESTING AND USE CASES

4.2.3 Virtue Stands in the Middle

�e last policy we are going to illustrate allows us to consider everyone’s needs

without excluding anyone. �is is possible by averaging the requests. Each re-

quest is transformed into its numerical consideration and is mediated together

with the others, the result will be sent to the actuators.

We can easily implement this policy using the convert predicate created pre-

viously:

mediate(A,Type,[X|Xs],todo(A,temperature,Average)) :-

convert(Type,[X|Xs],Ls),

sum_list(Ls, Sum),

length(Ls, Length),

Average is Sum / Length.

We also maintain the Policy of the Majority.

Let us suppose this scenario:

inRoom(eco_user, room2).

inRoom(spendthrift_user,room1).

inRoom(the_intern, room1).

and:

temperature(medium,room1).

light(low,room1).

temperature(medium,room2).

light(low,room2).

�e actions will then be:

57

CHAPTER 4. TESTING AND USE CASES

todo(ac, temperature, 22).

todo(shutters1, temperature, 215).

todo(shutters2, temperature, 100).

For the air conditioning eco user wishes a medium temperature (20), the intern

wishes it high (22) and spendthrift user wishes it very high (24) so the aver-

age is 22. For shutters1 spendthrift user wishes the brightness high (250) and

the intern wishes it medium (180) so we get 215 on average. Finally, eco user

wishes a low brightness ad it is implemented because it is the only preferences

for shutters2.

58

Chapter 5

Conclusions and Future Work

5.1 Summary

In this thesis, a�er presenting the context, the motivations and the objectives of

this work (Chapter 1), and brie�y introducing the technologies exploited through-

out the thesis (Chapter 2), we have described the design and prototyping imple-

mentation of a microservice-based system, GiòEnv, for the goal-driven manage-

ment of IoT-enabled Smart Environments, where users can express their pref-

erences about target temperature and indoor lighting, which are mediated by

policies set by the administrator (Chapter 3) through a stateless microservice

whose task is to perform the con�ict resolution process. Finally, we have illus-

trated the testbed environment used and the tests carried out on the deployment

of the prototype GiòEnv. (Chapter 4).

To conclude, in this chapter, we discuss:

• some related work,

59

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

• a critical assessment of the proposed contributions,

• possible extensions and some lines for future work.

5.2 Related Work

A smart environment is a physical environment in which perception, actuation,

and computation capabilities are integrated with the aim of acquiring and ex-

ploiting knowledge in order to adapt to users’ preferences and requirements [54].

Automated management of the environments to satisfy users’ needs and max-

imise energy savings is one of the crucial points, and many studies have been

done on it by investigating numerous approaches. [6, 7].

To this end, various works have focused on fuzzy logic [8] and neural net-

works [11] or their combinations [55, 56]. Fuzzy logic �ts well in applications

where input values are not precisely measured and provide a simple descrip-

tion, using linguistic rules, of complex expressions [57] while neural networks

can be used to predict energy consumption more reliably than traditional tech-

niques [58, 59]. Di�erently from those works, GiòEnv moves a step towards a

declarative approach based on Prolog which enables writing concise, easy to un-

derstand, modify, and maintain preferences and mediation rules. Besides, by re-

lying on the state-of-the-art resolution, GiòEnv decision-making can be explained

via the proofs obtained by the LPaaS.

Other approaches proposed the use of Multi-Agent Systems (MAS) [60] in

which the environment is modeled as a set of agents that interact with each

other and with users [61]. In [62] the use of a multi-agent approach in the �eld

of smart environments is discussed. �e importance of social a�itudes and norms

60

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

in the creation of multi-agent systems for intelligent building control is discussed

in [10]. Another example of applying a multi-agent system for controlling smart

environments is illustrated in [63], where machine learning techniques, to pre-

dict inhabitant movement pa�erns and typical activities, are proposed. �e use

of agents, in the context of smart environments, allows a simple system mod-

eling, various types of agents are created with various types of responsibilities

from user comfort to energy saving in the rooms. �e central point is the pro-

cess of mediation/negotiation between agents [9, 64]. Soon, IoT will see the de-

velopment of intelligent objects capable of social interactions (Social IoT) [65].

Speaking Objects will be able to take advantage of the use of the speech argumen-

tation. In particular, they will improve the interpretation of the decision-making

process and tolerance to uncertainty [65, 66].

In [67], a goal-driven approach based on agents and semantic web is pre-

sented, the idea of applying the semantic web to the area of the smart envi-

ronment would be interesting integrate into GiòEnv. Another goal-oriented ap-

proach for smart environments can be found in [68], but this work does not take

consider the con�ict resolution among agents when they have competing goals.

�e goal-oriented approach is particularly suitable for the management of intel-

ligent environments because users typically know what they want but do not

know what to do to achieve their goal [68].

Hierarchical goal management is also studied in [69, 70, 71]. A hierarchical

approach consists of dividing the goals into sub-goals which can be solved in

parallel or sequence. Using a hierarchical approach in the IoT sector can be very

interesting as discussed in [70]. For instance, in [71] this approach is discussed

regarding security in smart environments and in particular smart o�ces due to

61

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

the high number of potential users, devices and spaces, and the diversity of se-

curity roles. However, hierarchical management is also used in other �elds, such

as many-core resource allocation [69] �e management of the goals made by

GiòMediator is not hierarchical, indeed the various goals expressed by the users

are considered together in a single computation. �is makes the administration’s

policy formulation easier for �nal users of the system.

In [46, 47] LPaaS is proposed, a service whose purpose is to provide situated

intelligence to pervasive, ubiquitous systems. as illustrated in [72] implement-

ing signal-processing algorithms on resource-limited wireless nodes is extremely

complex. �ere, LPaaS o�ers the possibility of exploiting a simple service for

data reasoning on-demand in a light-weight, e�cient, and decentralized way.

GiòEnv exploits, thanks to GiòMediator, the potential o�ered by LPaaS to per-

form the mediation process and the resolution of con�icts [73].

5.3 Assessment of Results

With this thesis, we moved some �rst steps in the �eld of goal-driven manage-

ment of smart environments following a declarative approach, enabled by LPaaS,

and prototyped into a microservice-based IoT application for managing A/C and

natural lighting of an o�ce environment.

Our work has focussed on designing and implementing a system for man-

aging emerging con�icts between users’ goals and between users’ goals and

the administrator’s goals. We have therefore designed a prototype system to

manage IoT devices (GiòBu�ons & GiòBu�ons Manager) that monitors the sta-

tus of the room and triggers the required commands on the involved cyber-

62

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

physical devices. �e digital twins of exploited IoT devices are hosted on a Web

of �ings Server. To enable communication between the IoT and the computing

layer, we designed and developed an extension of the Web of �ings standard,

which - with respect to plain Web of �ings - permits dynamic and completely

remote management of �ings. As far as the con�ict resolution process is con-

cerned, we have developed a service that deals with it (GiòMediator) by exploiting

an inference engine to analyse the preferences expressed by users and mediate

them through the policies set by the administrator. Finally, we have developed

two services regarding the user interface: one that shows the current state of the

global environment (GiòInterface), the second that shows the details and history

of the individual rooms (GiòDashboard).

�e prototyped IoT device used to monitor temperature and brightness of the

involved smart rooms, based on Micro:bit, is very �exible and simple and could be

further extended to account for other possible architectures, before adopting ded-

icated hardware. Indeed, we believe that the rapid prototyping Micro:bit platform

could allow experimenting more, before converging on a �nal solution.

�e possibility to change hardware so easily is given by the fact that GiòEnv

has been designed to permit changing the system components modularly, by

reducing programming e�ort in case interfaces are kept as they are. In the case of

GiòBu�ons , this is possible because we have established a simple protocol for the

exchange of messages between IoT devices and the system if they cannot connect

to the internet or otherwise through the Web of �ings standard. In addition, the

�ing Description is an abstraction of IoT devices, which allows the change of

hardware with li�le work, necessary, to add or eliminate the sensors or actuators

o�ered by that type of hardware. Last but not least, �e proposed microservice

63

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

architecture allows the various components to be exploited even in sectors and

ways other than those proposed, thus guaranteeing good �exibility.

We believe that the Web of �ings-based monitoring and actuation systems

can be used independently of the decision system: the la�er may not even exist or

could be transformed into a semi-automatic one in which humans make decisions

and machines execute them.

GiòMediator is among the most �exible components of GiòEnv, being inde-

pendent of the particular application and usable in any automatic or semiauto-

matic decision-making process because exploits all the power and the �exibility

of the logic programming.

As support to human decision-making and system monitoring, the dashboard

service and the interactive map of the building allow the possibility of simply

checking the entire state of the environment and, if necessary, requesting the

details and history of the single rooms. �e information o�ered is however lim-

ited, a greater quantity and variety of information would lead to be�er insights.

We believe that the most important contributions proposed with this thesis

concern the Web of �ings Server and the GiòMediator.

Web of Things As for the Web of �ings Server we believe that the most inter-

esting aspects we proposed is the extension of the Web of �ings REST API.

�is proposal was born from looking for an e�ective and uniform method

for le�ing IoT devices and servers communicate.

We implemented an extension of the Web of �ings standard because we

believe that standardising also the communication between the device and

its virtual counterpart can bene�t the Web of �ings, making it more solid

and �exible. We need to investigate various aspects regarding the exten-

64

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

sion, above all from the point of view of security: in fact, our proposal al-

lows the user to specify customs scripts to be executed, which requires ap-

propriate caution. �e possibility of remotely creating and deleting �ings,

enabled by the proposed extension, may have very interesting implica-

tions, such as the possibility of o�ering an infrastructure on which cus-

tomers can create their own objects, perhaps also taking advantage of built-

in components.

GiòMediator �is component takes care of the con�ict resolution process. �is

service is an LPaaS, this improves �exibility and expressive power with

respect to traditional procedural systems, by relying on �rst-order logic.

Both users and the administrator can, therefore, express their goals through

the writing of simple Prolog clauses and the service will take care of im-

plementing the decision-making process. �e �exibility of the system can

lead it to adapt even to much more complex environments by simply (and

carefully) changing the modeling made for the environment.

To conclude, we believe it is necessary to add that in this prototype phase it was

not possible to perform a live deployment, despite having all the features and ca-

pabilities to be able to e�ectively manage an environment. For now, GiòEnv limits

itself to perceiving the state of the rooms and sending the commands for updat-

ing, however, these commands go up to the GiòBu�ons but are not actually en-

acted. To make GiòEnv fully functional, it is therefore only necessary to connect

the room actuators to the IoT devices.

65

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

5.4 Future Work

In this section we indicate �ve main lines to extend and improve the GiòEnv

prototype presented in this thesis. Namely:

Improving Web of Things Server An important point to develop is undoubted

that relating to the security of the Web of �ings Server. From this point of

view, the W3C still working to come up with a complete proposal [38].

Also adding di�erent levels of security for di�erent methods (as proposed

for the management of the extension with PATCH) could be taken into

account for a non-prototype version of the system. Another idea that we

considered very interesting but that we have not developed as it is not in-

herent to the thesis work is certainly that of being able to use the Web of

�ings as a tool to perform the Remote Method Invocation in a simple, ef-

fective and interoperable way. With the Web of �ings it would be possible

to develop a technology for uniform and interchangeable RMI between the

various programming languages: representing objects through �ing De-

scription with actions that re�ect the methods and properties the a�ributes.

Moreover, through the extension proposed by us of the Web of �ings it is

possible to create �ing Descriptions in a dynamically: all this is possible

thanks to the new representation of the �ing Description that allow users

to compose the elements of the description with the associated scripts. We

therefore �nd it interesting to develop this idea in order to make the cre-

ation of the �ing Descriptions itself modular: creating a database of vari-

ous components of the �ing Descriptions such as actions, property events,

or a set of them. In this way when a �ing Description is created there is no

66

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

need to write all the information but the user can link some parts directly

to the element of the database he wants to use. �us creating a dynamic,

easy to use the system to bring reusability even in the Web of �ings.

Di�erent Mediation Functions Testing di�erent mediation functions and

therefore be able to measure which one achieves the right balance be-

tween energy saving and user satisfaction. In addition to standard media-

tion functions, we also consider it interesting to evaluate the possibility of

implementing some through machine learning. Finally, introducing fuzzy

logic to carry out mediation [8] can be a very interesting starting point

towards more e�cient and dynamic con�ict management.

Automatic Recognition of Users & Prediction of Preferences Automatic

user recognition would make the whole system more e�ective and user

friendly: being able to automatically know the user’s position within the

environment and the rooms, the system could automatically adapt its pa-

rameters based on the users present without them having to manually re-

port their presence. By collecting data on each user, it may also be possible,

thanks to machine learning, to predict the user’s preferences without the

need for them to enter them manually, if not in a �rst phase. Furthermore,

these rules could easily adapt to the change of preferences of a certain user

or still recognize some wishes that not even the user knew he had.

User Interface As illustrated, the GiòDashboard service allows the creation of

dashboards on demand, but for the moment the format of the dashboards

is very simple and does not allow for customisation. Adding various ways

of visualising the same data would be necessary to actually release the

67

CHAPTER 5. CONCLUSIONS AND FUTURE WORK

so�ware. Users would be able to ask how they want to view the data by

specifying what type of charts they want to have. In this way, the same

sequence of data could be viewed in di�erent ways by di�erent users: all

without having to access the service but specifying at the time of the re-

quest what they want to see. Another interesting aspect is undoubtedly

that of o�ering a GUI to express users’ preferences.

Live Deployment &�estionnaires Deploying in a real environment in which

to actually test the system is essential to properly measure the GiòEnv per-

formance: both as regards energy consumption and as regards the satisfac-

tion of o�ce users, measurable with questionnaires. We also believe that

this system can be used in other applications where shared resources need

to be managed. For this reason, we also consider it interesting to evaluate

the applicability of the prototyped solution to other use cases.

68

Bibliography

[1] Gartner. Leading the IoT. 2017.

[2] Statista. Internet of �ings connected devices installed base worldwide from

2015 to 2025. 2020.

[3] Yusuf Perwej et al. “An extended review on internet of things (iot) and its

promising applications”. In: Communications on Applied Electronics (CAE),

ISSN (2019), pp. 2394–4714.

[4] Amelie Gyrard and Amit Sheth. “IAMHAPPY: Towards an IoT knowledge-

based cross-domain well-being recommendation system for everyday hap-

piness”. In: Smart Health 15 (2020), p. 100083. url: http://www.sciencedirect.

com/science/article/pii/S2352648319300479.

[5] Antonio Fernández-Caballero et al. “Smart environment architecture for

emotion detection and regulation”. In: Journal of Biomedical Informatics

64 (2016), pp. 55–73. url: http://www.sciencedirect.com/science/

article/pii/S1532046416301289.

[6] S. Merabti, B. Draoui, and F. Bounaama. “A review of control systems for

energy and comfort management in buildings”. In: 2016 8th International

69

http://www.sciencedirect.com/science/article/pii/S2352648319300479
http://www.sciencedirect.com/science/article/pii/S2352648319300479
http://www.sciencedirect.com/science/article/pii/S1532046416301289
http://www.sciencedirect.com/science/article/pii/S1532046416301289

BIBLIOGRAPHY

Conference on Modelling, Identi�cation and Control (ICMIC). 2016, pp. 478–

486.

[7] Eric Torunski et al. “A Review of Smart Environments for Energy Sav-

ings”. In: Procedia Computer Science 10 (2012). ANT 2012 and MobiWIS

2012, pp. 205–214. url: http://www.sciencedirect.com/science/

article/pii/S1877050912003869.

[8] Ahmed Salih. “Fuzzy Expert Systems to Control the Heating, Ventilating

and Air Conditioning (HVAC) Systems”. In: International Journal of Engi-

neering Research and Technology 4 (Aug. 2015).

[9] Paul Davidsson and Magnus Boman. “Saving Energy and Providing Value

Added Services in Intelligent Buildings: A MAS Approach”. In: vol. 1882.

Jan. 2000, pp. 166–177.

[10] Darren Booy et al. “A Semiotic Multi-Agent System for Intelligent Building

Control”. In: (Feb. 2008).

[11] Rajesh Kumar, Rajeev Aggarwal, and Jyoti Sharma. “Energy analysis of a

building using arti�cial neural network: A review”. In: Energy and Build-

ings 65 (Oct. 2013), pp. 352–358.

[12] IFTTT: If �is �en �at. url: https://ifttt.com/.

[13] Google Home device speci�cations. url: https://support.google.com/

googlenest/answer/7072284.

[14] What Is Alexa? url: https://developer.amazon.com/en-US/alexa.

[15] Christian Becker et al. “Pervasive computing middleware: current trends

and emerging challenges”. In: CCF Transactions on Pervasive Computing

and Interaction 1 (Feb. 2019).

70

http://www.sciencedirect.com/science/article/pii/S1877050912003869
http://www.sciencedirect.com/science/article/pii/S1877050912003869
https://ifttt.com/
https://support.google.com/googlenest/answer/7072284
https://support.google.com/googlenest/answer/7072284
https://developer.amazon.com/en-US/alexa

BIBLIOGRAPHY

[16] S. Dustdar, C. Avasalcai, and I. Murturi. “Invited Paper: Edge and Fog Com-

puting: Vision and Research Challenges”. In: 2019 IEEE International Con-

ference on Service-Oriented System Engineering (SOSE). 2019, pp. 96–9609.

[17] P. Habibi et al. “Fog Computing: A Comprehensive Architectural Survey”.

In: IEEE Access 8 (2020), pp. 69105–69133.

[18] Flavio Bonomi et al. “Fog Computing: A Platform for Internet of �ings

and Analytics, Big Data and Internet of �ings: 169 A Roadmap for Smart

Environments, Studies in Computational Intelligence 546”. In: Mar. 2014.

[19] GIÒ: a Fog computing testbed for research & education. url: https://www.

researchgate.net/project/GIO-a-Fog-computing-testbed-for-

research-education.

[20] Martin Cooper. “Meet the BBC Micro:Bit”. In: ITNOW 61.3 (2019), pp. 14–

15.

[21] Sam Newman. Building microservices: designing �ne-grained systems. ” O’Reilly

Media, Inc.”, 2015.

[22] B. Butzin, F. Golatowski, and D. Timmermann. “Microservices approach

for the internet of things”. In: 2016 IEEE 21st International Conference on

Emerging Technologies and Factory Automation (ETFA). 2016, pp. 1–6.

[23] Petar Krivic et al. “Microservices as Agents in IoT Systems”. In: Agent and

Multi-Agent Systems: Technology and Applications. Ed. by Gordan Jezic et

al. Cham: Springer International Publishing, 2017, pp. 22–31. isbn: 978-3-

319-59394-4.

[24] M. A. Razzaque et al. “Middleware for Internet of �ings: A Survey”. In:

IEEE Internet of �ings Journal 3.1 (2016), pp. 70–95.

71

https://www.researchgate.net/project/GIO-a-Fog-computing-testbed-for-research-education
https://www.researchgate.net/project/GIO-a-Fog-computing-testbed-for-research-education
https://www.researchgate.net/project/GIO-a-Fog-computing-testbed-for-research-education

BIBLIOGRAPHY

[25] Simon Duquennoy, Gilles Grimaud, and Jean-Jacques Vandewalle. “�e

Web of �ings: Interconnecting Devices with High Usability and Perfor-

mance”. In: Proceedings - 2009 International Conference on Embedded So�-

ware and Systems, ICESS 2009 (May 2009).

[26] Deze Zeng, Song Guo, and Zixue Cheng. “�e web of things: A survey”.

In: JCM 6.6 (2011), pp. 424–438.

[27] A. Brogi et al. “Bonsai in the Fog: An active learning lab with Fog comput-

ing”. In: 2018 �ird International Conference on Fog and Mobile Edge Com-

puting (FMEC). 2018, pp. 79–86.

[28] Micro:bit Developer Community-Hardware Description. url: http://tech.

microbit.org/hardware/.

[29] Micro:bit Bluetooth Low Energy. url: https://lancaster-university.

github.io/microbit-docs/resources/bluetooth/bluetooth profile.

html.

[30] Micro:bit Radio. url: https://lancaster- university.github.io/

microbit-docs/ubit/radio/.

[31] Micro:bit Docs. url: https://makecode.microbit.org/reference/.

[32] Micro:bit Runtime. url: https://lancaster-university.github.io/

microbit-docs/.

[33] Micro:coin. url: https://makecode.microbit.org/projects/micro-

coin.

[34] Web of �ings Working Group. Web of �ings: Architecture. Version W3C

Recommendation. Apr. 2020. url: https : / / www . w3 . org / TR / wot -

architecture/.

72

http://tech.microbit.org/hardware/
http://tech.microbit.org/hardware/
https://lancaster-university.github.io/microbit-docs/resources/bluetooth/bluetooth_profile.html
https://lancaster-university.github.io/microbit-docs/resources/bluetooth/bluetooth_profile.html
https://lancaster-university.github.io/microbit-docs/resources/bluetooth/bluetooth_profile.html
https://lancaster-university.github.io/microbit-docs/ubit/radio/
https://lancaster-university.github.io/microbit-docs/ubit/radio/
https://makecode.microbit.org/reference/
https://lancaster-university.github.io/microbit-docs/
https://lancaster-university.github.io/microbit-docs/
https://makecode.microbit.org/projects/micro-coin
https://makecode.microbit.org/projects/micro-coin
https://www.w3.org/TR/wot-architecture/
https://www.w3.org/TR/wot-architecture/

BIBLIOGRAPHY

[35] Web of �ings Working Group. Web of �ings: �ing Description. Version W3C

Recommendation. Apr. 2020. url: https://www.w3.org/TR/wot-thing-

description/.

[36] Web of �ings Working Group. Web of �ings: Scripting API. Version W3C

Working Dra�. Oct. 2019. url: https://www.w3.org/TR/wot-scripting-

api/.

[37] Web of �ings Working Group. Web of �ings: Binding Templates. Ver-

sion W3C Working Group Note. Jan. 2020. url: https://www.w3.org/

TR/wot-binding-templates/.

[38] Web of �ings Working Group. Web of �ings: Security and Privacy Guide-

lines. Version W3C Working Group Note. Nov. 2019. url: https://www.

w3.org/TR/wot-security/.

[39] Douglas Crockford. �e application/json Media Type for JavaScript Object

Notation (JSON). Internet informational RFC 4627. July 2006.

[40] Roy Fielding. “Architectural Styles and the Design of Network-based So�-

ware Architectures”. PhD thesis. 2000. Chap. 5. url: https://www.ics.

uci.edu/∼fielding/pubs/dissertation/rest arch style.html.

[41] D. Guinard, V. Trifa, and E. Wilde. “A resource oriented architecture for

the Web of �ings”. In: 2010 Internet of �ings (IOT). 2010, pp. 1–8.

[42] Erik Wilde. “Pu�ing things to REST”. In: (2007).

[43] Alain Colmerauer and Philippe Roussel. “�e birth of Prolog”. In: (Nov.

1992). url: http://alain.colmerauer.free.fr/alcol/ArchivesPublications/

PrologHistory/19november92.pdf.

73

https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-scripting-api/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-binding-templates/
https://www.w3.org/TR/wot-security/
https://www.w3.org/TR/wot-security/
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.html
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.html
http://alain.colmerauer.free.fr/alcol/ArchivesPublications/PrologHistory/19november92.pdf
http://alain.colmerauer.free.fr/alcol/ArchivesPublications/PrologHistory/19november92.pdf

BIBLIOGRAPHY

[44] Robert Kowalski. “Predicate Logic as Programming Language”. In: vol. 74.

Jan. 1974, pp. 569–574.

[45] Ivan Bratko. Prolog programming for arti�cial intelligence. Pearson Educa-

tion Canada, 2012. isbn: 9780321417466.

[46] ROBERTA CALEGARI et al. “Logic programming as a service”. In: �eory

and Practice of Logic Programming 18.5-6 (2018), pp. 846–873.

[47] R. Calegari et al. “Logic Programming as a Service (LPaaS): Intelligence for

the IoT”. In: 2017 IEEE 14th International Conference on Networking, Sensing

and Control (ICNSC). 2017, pp. 72–77.

[48] Lynne E Parker. “Distributed Intelligence: Overview of the Field and its

Application in Multi-Robot Systems.” In: AAAI Fall Symposium: Regarding

the Intelligence in Distributed Intelligent Systems. 2007, pp. 1–6.

[49] Cesare Pautasso and Erik Wilde. “Why is the Web Loosely Coupled? A

Multi-Faceted Metric for Service Design”. In: Proceedings of the 18th Inter-

national Conference on World Wide Web. WWW ’09. Madrid, Spain: Asso-

ciation for Computing Machinery, 2009, pp. 911–920. isbn: 9781605584874.

url: https://doi.org/10.1145/1526709.1526832.

[50] Robert C Martin. Agile so�ware development: principles, pa�erns, and prac-

tices. Prentice Hall, 2002.

[51] Ben Francis, ed. Mozilla Web �ing API. url: https://iot.mozilla.org/

wot/.

[52] �ingweb. url: https://www.thingweb.io/.

[53] ProbLog. url: https://dtai.cs.kuleuven.be/problog/.

74

https://doi.org/10.1145/1526709.1526832
https://iot.mozilla.org/wot/
https://iot.mozilla.org/wot/
https://www.thingweb.io/
https://dtai.cs.kuleuven.be/problog/

BIBLIOGRAPHY

[54] Franco Cicirelli et al. “Metamodeling of Smart Environments: from de-

sign to implementation”. In: Advanced Engineering Informatics 33 (2017),

pp. 274–284. url: http://www.sciencedirect.com/science/article/

pii/S1474034616302063.

[55] Sareh Naji et al. “Application of adaptive neuro-fuzzy methodology for

estimating building energy consumption”. In: Renewable and Sustainable

Energy Reviews 53 (2016), pp. 1520–1528.

[56] Wu Jian and Cai Wenjian. “Development of an adaptive neuro-fuzzy method

for supply air pressure control in HVAC system”. In: Smc 2000 confer-

ence proceedings. 2000 ieee international conference on systems, man and cy-

bernetics.’cybernetics evolving to systems, humans, organizations, and their

complex interactions’(cat. no. 0. Vol. 5. IEEE. 2000, pp. 3806–3809.

[57] Francesco Calvino et al. “�e control of indoor thermal comfort condi-

tions: introducing a fuzzy adaptive controller”. In: Energy and Buildings

36.2 (2004), pp. 97–102. url: http://www.sciencedirect.com/science/

article/pii/S0378778803001312.

[58] William J Stevenson. Using arti�cial neural nets to predict building energy

parameters. Tech. rep. American Society of Heating, Refrigerating and Air-

Conditioning Engineers . . ., 1994.

[59] Nivine A�oue, Isam Shahrour, and Ra�c Younes. “Smart building: Use of

the arti�cial neural network approach for indoor temperature forecast-

ing”. In: Energies 11.2 (2018), p. 395.

[60] Michael Wooldridge. An Introduction to MultiAgent Systems. 2nd. Wiley

Publishing, 2009. isbn: 0470519460.

75

http://www.sciencedirect.com/science/article/pii/S1474034616302063
http://www.sciencedirect.com/science/article/pii/S1474034616302063
http://www.sciencedirect.com/science/article/pii/S0378778803001312
http://www.sciencedirect.com/science/article/pii/S0378778803001312

BIBLIOGRAPHY

[61] Huib Aldewereld, Virginia Dignum, and Wamberto W. Vasconcelos. “Group

Norms for Multi-Agent Organisations”. In: ACM Trans. Auton. Adapt. Syst.

11.2 (June 2016). url: https://doi.org/10.1145/2882967.

[62] Diane J Cook. “Multi-agent smart environments”. In: Journal of Ambient

Intelligence and Smart Environments 1.1 (2009), pp. 51–55.

[63] Diane J. Cook, Michael Youngblood, and Sajal K. Das. “A Multi-agent Ap-

proach to Controlling a Smart Environment”. In: Designing Smart Homes:

�e Role of Arti�cial Intelligence. Ed. by Juan Carlos Augusto and Chris D.

Nugent. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 165–182.

isbn: 978-3-540-35995-1. url: https://doi.org/10.1007/11788485 10.

[64] C. Becker et al. “BASE - a micro-broker-based middleware for pervasive

computing”. In: Proceedings of the First IEEE International Conference on

Pervasive Computing and Communications, 2003. (PerCom 2003). 2003, pp. 443–

451.

[65] M. Lippi et al. “An Argumentation-Based Perspective Over the Social IoT”.

In: IEEE Internet of �ings Journal 5.4 (2018), pp. 2537–2547.

[66] L. Amgoud, N. Maudet, and S. Parsons. “Modelling dialogues using argu-

mentation”. In: Proceedings Fourth International Conference on MultiAgent

Systems. 2000, pp. 31–38.

[67] A. Andrushevich et al. “Towards semantic buildings: Goal-driven approach

for building automation service allocation and control”. In: 2010 IEEE 15th

Conference on Emerging Technologies Factory Automation (ETFA 2010). 2010,

pp. 1–6.

76

https://doi.org/10.1145/2882967
https://doi.org/10.1007/11788485_10

BIBLIOGRAPHY

[68] Javier Palanca et al. “Designing a goal-oriented smart-home environment”.

In: Information Systems Frontiers 20.1 (2018), pp. 125–142.

[69] A. M. Rahmani, A. Jantsch, and N. Du�. “HDGM: Hierarchical Dynamic

Goal Management for Many-Core Resource Allocation”. In: IEEE Embed-

ded Systems Le�ers 10.3 (2018), pp. 61–64.

[70] A. Jantsch et al. “Hierarchical dynamic goal management for IoT systems”.

In: 2018 19th International Symposium on �ality Electronic Design (ISQED).

2018, pp. 370–375.

[71] Iván Marsá-Maestre et al. “A Hierarchical, Agent-based Approach to Se-

curity in Smart O�ces.” In: ICUC. 2006.

[72] G. Fortino et al. “Enabling E�ective Programming and Flexible Manage-

ment of E�cient Body Sensor Network Applications”. In: IEEE Transac-

tions on Human-Machine Systems 43.1 (2013), pp. 115–133.

[73] G. Wiederhold and M. Genesereth. “�e conceptual basis for mediation

services”. In: IEEE Expert 12.5 (1997), pp. 38–47.

[74] Flask. url: https://flask.palletsprojects.com/en/1.1.x/.

[75] Reliable UDP Algorithms. url: https://io7m.com/documents/udp-

reliable/.

[76] Doan �anh Tran and Eunmi Choi. “A reliable UDP for ubiquitous com-

munication environments”. In: 2007.

[77] M. Masirap et al. “Evaluation of reliable UDP-based transport protocols for

Internet of �ings (IoT)”. In: 2016 IEEE Symposium on Computer Applica-

tions Industrial Electronics (ISCAIE). 2016, pp. 200–205.

77

https://flask.palletsprojects.com/en/1.1.x/
https://io7m.com/documents/udp-reliable/
https://io7m.com/documents/udp-reliable/

BIBLIOGRAPHY

[78] Fahad Al-Dhief, Naseer Sabri, and Musatafa Albadr. “Performance Com-

parison between TCP and UDP Protocols in Di�erent Simulation Scenar-

ios”. In: (Dec. 2018).

[79] Zhaojuan Yue, Yongmao Ren, and Jun Li. “Performance evaluation of UDP-

based high-speed transport protocols”. In: 2011 IEEE 2nd International Con-

ference on So�ware Engineering and Service Science. 2011, pp. 69–73.

[80] D. Madhuri and P. C. Reddy. “Performance comparison of TCP, UDP and

SCTP in a wired network”. In: 2016 International Conference on Communi-

cation and Electronics Systems (ICCES). 2016, pp. 1–6.

[81] Yongmao Ren et al. “Performance Comparison of UDP-based Protocols

Over Fast Long Distance Network”. In: Information Technology Journal 8

(Apr. 2009).

[82] Aaron Falk et al. “Transport protocols for high performance”. In: Commun.

ACM 46 (Nov. 2003), pp. 42–49.

[83] R. Fielding et al. Hypertext Transfer Protocol – HTTP/1.1. Tech. rep. June

1999. url: https://doi.org/10.17487/rfc2616.

[84] Dipa Soni and Ashwin Makwana. “A survey on mq�: a protocol of internet

of things (iot)”. In: International Conference On Telecommunication, Power

Analysis And Computing Techniques (ICTPACT-2017). 2017.

[85] Zach Shelby, Klaus Hartke, and Carsten Bormann. “�e constrained appli-

cation protocol (CoAP)”. In: (2014).

[86] Yunhong Gu and Robert L. Grossman. “UDT: UDP-based data transfer for

high-speed wide area networks”. In: Computer Networks 51.7 (2007). Pro-

tocols for Fast, Long-Distance Networks, pp. 1777–1799.

78

https://doi.org/10.17487/rfc2616

BIBLIOGRAPHY

[87] B. Eckart, Xubin He, and Qishi Wu. “Performance adaptive UDP for high-

speed bulk data transfer over dedicated links”. In: 2008 IEEE International

Symposium on Parallel and Distributed Processing. 2008, pp. 1–10.

79

Appendix A

First Version of the Web of

Things Server

A.1 Mozilla’s Web of �ings

�e �rst version of the Web of �ings Server was based on the Web of �ings Server

proposed by Mozilla [51]. We chose this implementation because of its simplicity

which made changes and extensions easy to do.

First, we decided to rewrite the server in Flask [74], while keeping the �ing

Description code, but adapting it to the new infrastructure. We made this choice

because, unlike the code o�ered by the basic implementation, we believe that a

server in Flask is more �exible to manage and modify.

We also added the possibility to interact with the server through WebSockets,

whose interactions are described but not implemented in the code.

�e main problem we had to face was deciding how to make physical devices

communicate with digital twins. �is is because a way to update the status of a

80

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

resource has not been standardised [36, 34, 37], if it was read-only (for example

sensor values).

We decided to solve the problem through a client-server architecture: the

GiòBu�ons Manager would have been the client and would have sent the up-

dates to the Web of �ings Server who would have managed them appropriately.

�e problem remained of deciding which protocol to use for communication: a

reliable protocol was needed, so as not to lose requests for status changes, but

at the same time fast for noti�cations and requests to arrive as soon as possible.

Various options emerged from the literature [75, 76, 77, 78, 79, 80, 81, 82] but

none fully satis�ed us as we did not �nd anything suitable for a dynamic IoT en-

vironment such as GiòEnv. We, therefore, decided to implement a protocol that

re�ected all our needs: ReTRo.

�is protocol covered all our needs: it was fast, it was reliable, it did not re-

quire initialisation or closure phases and it also performed well in dynamic topo-

logical environments. But, the simplicity of the Mozilla’s server was beginning

to make itself felt: the more the project went on, the more work was required

only to adapt the server to our needs and also with the o�cial standardization it

was also necessary to readjust the code and the �ing Descriptions to the o�cial

requirements. All these considerations led us to re-analyse the available alterna-

tives and we decided to switch to the server o�ered by Eclipse: �ingWeb22 [52].

We will now analyse the proposed communication protocol.
22see Section 3.2.4.

81

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

A.2 ReTRo

A.2.1 Principles

ReTRo – UDP (Real-Time Reliability over UDP) is a communication protocol based

on UDP. �is protocol is designed for communication between IoT Devices. �e

principles behind the protocol are:

• a large number of IoT devices sends to each other small messages,

• the frequency of messages can be high or low,

• usually a message represents real-time information,

• messages must arrive at their destination as soon as possible,

• each device can send messages to many devices simultaneously,

• a device usually send di�erent types of messages (e.g. status updates, ac-

tions, negotiation, requests),

• the system’s topology can be client-server, peer-to-peer, or hybrid and can

change dynamically. So, the communication needs to be fast and reliable, it

must also allow the exchange of messages between many di�erent devices.

�erefore, this protocol was designed for real-time sensitive IoT applications.

�e choices made a point in the direction of having fast, reliable communication

to many devices simultaneously. Furthermore, given the dynamic nature of IoT

systems, the protocol must be able to adapt to changes in topology in the system.

82

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

A.2.2 Characteristics

ReTRo is:

• bidirectional,

• multiply-Connected (1 Port – N Connection),

• reliable (allows ordering and acknowledge),

• message oriented,

• p2p Friendly,

• w/o initialisation phase or closing phase,

• with �ow control (RTO),

• with implicit window control (Channel),

• with implicit Flow label (Mailbox),

• with parallel management of �ows,

• with 32 bit header.

�e protocol does not require an initialisation phase and bu�ers are not used to

handle unordered messages. In fact, all these features would slow down com-

munication and considering the real time nature of the messages and their small

size, they would not improve performance.

83

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

Figure A.1: A diagram showing how a Channel works.

A.2.3 De�nitions

• a User is de�ned by the pair (ip,port),

• when a User receives or sends a message to another User, not yet met,

he creates a Connection: a set of Mailbox each identi�ed by a number.

A Connection allows bidirectional communication with a single User (ip,

port),

• a Mailbox is de�ned by two Channels, one for the messages to be sent and

the other for those received.,

• a Channel is a special queue: it has a maximum size (max size) and contains

only the max size most recent messages (see Figure A.1),

A.2.4 Implementation choices

Given the need for fast and possibly frequent communication of small messages,

it was decided to use the UDP protocol instead of TCP.

It was chosen to use the Channels because, given the real-time nature of

the information contained in the messages, it would not make sense to store

too old information. �e choice of using multiple Mailboxes for communication

with the same User allows di�erentiating, already at the communication level,

84

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

di�erent messages’ type. Furthermore, the management of messages in di�erent

Mailboxes is completely independent.

�e ReTRo protocol has the following characteristics to ensure reliability:

• each message has a sequence number and a mailbox number,

• when a message is received an ack message is sent in response,

• if an ack is not received within a certain time limit the message is sent

back,

• if the sequence number is less than or equal to the last message received

in the same Mailbox, the message is discarded,

• for each Mailbox: as long as you do not receive an ack message for the last

message sent, no other messages are sent from the same mailbox until the

ack is received or the message is discarded from the Channel because it is

too old.

�ese mechanisms allow us to have a real-time, fast and, reliable protocol. �e

multi-Mailbox system allows you to manage messages to the same User indepen-

dently: while waiting for an ack in a speci�c mailbox, the others can continue

communication independently (see Figures A.7 and A.6). �e sequence number

also allows you to manage the sorting of messages from the same mailbox.

Furthermore, if the last message arrived is for example 42, and arrives 44

before 43, it is not important to manage the situation, because the correct use

of Mailboxes allows managing only one type of message for each Mailbox. So

message 44 will be an “update” of 43, therefore the information lost in message

43, which even if it arrives at its destination will be discarded, is not important.

85

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

A.2.5 Header

�e 32-bit header is composed as follows:

SYN → 1 bit

ACK → 1 bit

Sequence/Ack number → 16 bit

Global number → 10 bit

Mailbox number → 4 bit

A.2.6 Summary

ReTRo is a protocol designed for dynamic IoT systems, in which the reliability and

speed of communications are essential. To implement all these features we have

chosen to use the UDP protocol by adding some useful features for our purposes.

To start, with a single pair (ip, port) it is possible to communicate, bidirectionally,

with many other devices, thanks to the Connection concept, which also allows

communication to be started without any initialisation phase. Each connection

is also de�ned by a series of Mailboxes, this allows the user to be able to mark

di�erent messages in a di�erent way, implementing a rudimentary �ality of

Service system (like Flow labels in IPv6) di�erent mailboxes will manage di�erent

message �ows independently and therefore parallel to the others mailbox. While

messages in the same mailbox will be sent sequentially and will have a sequence

number, this allows for reliable and orderly sending of messages within the same

mailbox, in addition to the sequence number, there is also a global one, which

is not used in the management of communications but can be used by the user

86

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

to make comparisons between messages in di�erent mailboxes. Finally, a simple

and fast window control mechanism is implemented thanks to the Channels, the

concept behind this structure is that in a channel there are messages concerning

the same �ow and in case the channel is full you can discard the older messages

because those new will “overwrite” that information and thanks to the classic

RTO, we implement �ow control.

A.2.7 Related Work

With ReTRo we have tried to implement a reliable IoT data communication pro-

tocol. For this reason, we will now mention, to the best of our knowledge, the

most used protocols for reliable data communication for IoT systems. We can

divide the protocols into two categories: those at the application level and those

at the transport level [77, 79].

Among the existing application-level protocols, HTTP [83], MQTT [84] and

CoAP [85] are relevant to our study. At the cost of greater communications over-

head, these protocols allow great expressiveness and simplicity in their use com-

pared to lower-level protocols.

As far as the transport layer protocols are concerned, the following deserve

particular a�ention: R-UDP [76], UDT [86] and PA-UDP[87]. �ese protocols

are created following the principle of guaranteeing reliability and at the same

time the highest possible performance. For this, connection setup mechanisms

are used which, in the case of sending small packets not below, may, however,

lead to e�ciency losses.

87

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

A.2.8 Diagrams

In this section, some diagrams show the functioning of ReTRo in various phases.

Figure A.2: A standard interaction.

88

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

Figure A.3: �e �rst message must have the SYN �ag at 1.

Figure A.4: If a packet is lost, the message is sent again.

89

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

Figure A.5: If an ack is lost, the message is sent again.

Figure A.6: Messages in di�erent mailboxes can be sent in parallel.

90

APPENDIX A. FIRST VERSION OF THE WEB OF THINGS SERVER

Figure A.7: Messages in the same mailbox must be sent sequentially.

Figure A.8: In the event of an exchange of messages, the last one received (with
a lower sequence number) is ignored.

91

Appendix B

�ing Descriptions

Digital twins are implemented through �ing Descriptions, as per the standard23.

Before delving into the description of the rooms and Micro:bit , we would like

to anticipate that, although the standard envisages the use of security proto-

cols [38], we have chosen not to use it in our implementation, this to facilitate

development and because security does not concern the purpose of this thesis,

but is foreseen in possible future work.

B.1 Virtual Room

�e status of a room can be determined either by the same Micro:bit or by two dif-

ferent Micro:bits (one for the temperature the other for the brightness) for which

the reference is kept to which Micro:bit deals with a certain parameter. It is im-
23�e �ing Description the standard [35] provides for the de�nition of the properties of the

thing, the actions and events that that thing can launch and for each of them the possible ways
with which it is possible to interact. �e properties form the state of the thing and each of them
can be read-only or write-only or readable and writable, moreover, they can be observable (the
user is noti�ed when the value changes).

92

APPENDIX B. THING DESCRIPTIONS

portant to note that the Micro:bits in the state are not those that read the sensors

but those that deal with the implementation of the requests. �e reference is

necessary so that when mediation is activated the Virtual Room knows to that

Virtual GiòBu�on to forward the request.

�e Virtual Room status will therefore described by the following:

• dashboard: the url of the associated dashboard (read-only),

• temperature microbit: the url of the Virtual GiòBu�on that takes care of

temperature management (read-only),

• light microbit: the url of the Virtual GiòBu�on that takes care of bright-

ness management (read-only),

• last indoor update: timestamp of the last update received (read-only and

observable),

• last outdoor update: timestamp of the latest weather update (read-only

and observable),

• users: users in the room with their preferences (read-only and observable),

• temperature: the last temperature’s value received (read-only and observ-

able),

• temperatureL: label (very low, low, medium, high, very high) of the last

temperature’s value received (read-only and observable),

• light: the last brightness’ value received (read-only and observable),

93

APPENDIX B. THING DESCRIPTIONS

• lightL: label (low, medium, high) of the last brightness’ value received

(read-only and observable),

• time: the current time (read-only and observable),

• timeL: label (morning, a�ernoon, evening, night) of the current time (read-

only and observable),

• outdoor temperature: the last outdoor temperature’s value received (read-

only and observable),

• outdoor temperatureL: label (very low, low, medium, high, very high) of

the last outdoor temperature’s value received (read-only and observable),

• outdoor light: the last outdoor brightness’ value received (read-only and

observable),

• outdoor lightL: label (low, medium, high) of the last outdoor brightness’

value received (read-only and observable).

We have chosen to associate labels with state properties because we believe

that users express their preferences be�er and more easily through them. For the

temperature very low means < 18 degrees Celsius, low < 20, medium < 22, high

< 24 and very high >= 24. For the light (performed in an interval between 0

and 255) low means < 25, medium < 80 and high >= 80. For the time: from 8 to

13 it’s morning, until 19 it’s a�ernoon, until 22 it’s evening, and then it’s night.

We point out that not only internal parameters but also external parameters

are considered: this allows the expression of more precise rules and more tar-

geted and e�cient management of the rooms. In addition to the environmental

94

APPENDIX B. THING DESCRIPTIONS

parameters, internal and external, the time of day and the number of users24

present are also taken consideration for the same reasons of expressiveness and

e�ciency.

Regarding the actions:

• refresh: force updating the weather data,

• enter: indicates that a certain user has entered the room,

• leave: indicates that a certain user has leaved the room,

• mediate: starts the mediation process.

Finally, the Virtual Rooms do not launch events.

B.2 Virtual Mediator

When the mediate action of a room is invoked, the status of that is sent to the

Virtual Mediator which updates its information and starts the mediation process

by interacting with GiòMediator.

�e relative �ing Description ha the following properties:

• rooms: for each Virtual Room there is the most recent status reported,

• users: contains each user’s preferences and administrator policies.

�e actions are:

• setRules: set the preferences of a user,
24When the room status is sent to the GiòMediator the user’s list is replaced by only the number

of users present.

95

APPENDIX B. THING DESCRIPTIONS

• getRules: get the preferences of a user,

• mediate: start a new mediation process,

• solve: resolve all con�icts interacting with GiòMediator,

• deploy: noti�es the various Virtual GiòBu�on of the decisions taken.

�e Virtual Mediator does not launch events.

B.3 Virtual GiòBu�on

Having used only Micro:bit as physical device we will focus on their �ing De-

scriptions, any other type of hardware will however require li�le adaptation work.

A Virtual GiòBu�on is identi�ed by is friendly name and its status is formed

as follows:

• serial number: the serial number of this Micro:bit (read-only),

• dashboard: the url of the associated dashboard (read-only),

• light: the last value recorded by the light sensor (read-only and observ-

able),

• temperature: the last value recorded by the temperature sensor (read-only

and observable).

�e actions associated with a Virtual GiòBu�on are:

• set: receives as input a new se�ing for a parameter and launches the re-

lated event.

96

APPENDIX B. THING DESCRIPTIONS

Finally, the events:

• setup temperature: a new temperature se�ing is noti�ed,

• setup light: a new brightness se�ing is noti�ed.

It is precisely through the setups events that the GiòBu�ons Manager and

therefore Micro:bits become aware of the results of the mediation and therefore

of the new states to perform. For each event of a Virtual GiòBu�on, the GiòBu�ons

Manager creates an “observer” who waits, through long polling, for the publica-

tion of new events which are then sent through the Micro:bit server to the Mi-

cro:bit a�ected by that event. Among the various options, we have chosen long

polling as it is among the fastest and simplest and therefore among the most

supported also in devices with limited resources.

We have chosen to use distinct events for distinct parameters to allow the

simultaneous observation of events relating to di�erent parameters.

97

	Introduction
	Context
	Considered Problem
	Objectives of the Thesis
	Outline of the Thesis

	Background
	Micro:bit
	Web of Things
	Prolog

	GiòEnv: Design & Implementation
	GiòEnvOverview
	Big Picture
	Architecture Bird’s Eye-View

	GiòEnvComponents
	Simple Storage Microservice
	GiòButton
	GiòButtons Manager
	Web of ThingsServer
	GiòMediator
	GiòDashboard
	GiòInterface

	Testing and Use Cases
	Testing
	Testbed
	Experiments

	Use Cases
	Remember to Turn Off the Light
	Season-Wise
	Virtue Stands in the Middle

	Conclusions and Future Work
	Summary
	Related Work
	Assessment of Results
	Future Work

	First Version of the Web of ThingsServer
	Mozilla's Web of Things
	ReTRo
	Principles
	Characteristics
	Definitions
	Implementation choices
	Header
	Summary
	Related Work
	Diagrams

	Thing Descriptions
	Virtual Room
	Virtual Mediator
	Virtual GiòButton

